Skip to main content
Log in

Differential expression of an ensemble of the key genes involved in cell-cycle regulation in lung cancer

  • Molecular Cell Biology
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Targeted cancer therapy directed at individual targets is often accompanied by the rapid development of drug resistance. The development of a new generation of antitumor drugs involves the search for many targets simultaneously to block or, conversely, restore their activity. In this regard, simultaneous analysis of gene expression in a complex network of interactions, primarily cell cycle control elements, is relevant for the search of specific molecular markers for the differential diagnosis of adenocarcinoma (ADC) and squamous cell lung cancer (SCC), as well as new targets for therapy. In this paper we performed an extended quantitative analysis of the expression of two suppressor genes, CTDSPL and its target RB1, as well as 84 genes of the main participants of the p16INK4A-Cdk/cyclin D1-Rb and p53/p21Waf1 signaling pathways in the histological types of non-small-cell lung cancer (NSCLC), i.e., ADC and SCC, using the special panel of the Human Cell Cycle Regulation Panel. The expression profile of some genes shows the specificity to the histological type of NSCLC and the presence of metastases. The genes with a significantly increased expression that affect the activity of Rb (cyclins, cyclin-dependent kinases, their activators, inhibitors, etc.) can serve as potential targets for combined therapy of both ADC and SCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NSCLC:

non-small-cell lung cancer

ADC:

adenocarcinoma

SCC:

squamous-cell lung cancer, CTDSPL, C-terminal domain small phosphatase-like protein of the RNA polymerase II

Rb:

retinoblastoma protein

References

  1. Travis W.D., Brambilla E., Noguchi M., et al. 2011. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J. Thoracic Oncol.: Official Publ. Int. Assoc. Study Lung Cancer. 6, 244–285.

    Article  Google Scholar 

  2. Spiro S.G., Tanner N.T., Silvestri G.A., et al. 2010. Lung cancer: Progress in diagnosis, staging and therapy. Respirology. 15, 44–50.

    Article  PubMed  Google Scholar 

  3. Gower A., Wang Y., Giaccone G. 2014. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. J. Mol. Med. 92, 697–707.

    Article  CAS  PubMed  Google Scholar 

  4. Vincenzi B., Schiavon G., Silletta M., et al. 2006. Cell cycle alterations and lung cancer. Histol. Histopathol. 21, 423–435.

    CAS  PubMed  Google Scholar 

  5. Yokota J., Kohno T. 2004. Molecular footprints of human lung cancer progression. Cancer Sci. 95, 197–204.

    Article  CAS  PubMed  Google Scholar 

  6. Weinberg R.A. 1995. The retinoblastoma protein and cell cycle control. Cell. 81, 323–330.

    Article  CAS  PubMed  Google Scholar 

  7. Osada H., Takahashi T. 2002. Genetic alterations of multiple tumor suppressors and oncogenes in the carcinogenesis and progression of lung cancer. Oncogene. 21, 7421–7434.

    Article  CAS  PubMed  Google Scholar 

  8. Husgafvel-Pursiainen K., Boffetta P., Kannio A., et al. 2000. p53 mutations and exposure to environmental tobacco smoke in a multicenter study on lung cancer. Cancer Res. 60, 2906–2911.

    CAS  PubMed  Google Scholar 

  9. Yeo M., Lin P.S., Dahmus M.E., Gill G.N. 2003. A novel RNA polymerase II C-terminal domain phosphatase that preferentially dephosphorylates serine 5. J. Biol. Chem. 278, 26078–26085.

    Article  CAS  PubMed  Google Scholar 

  10. Kashuba V.I., Li J., Wang F., et al. 2004. RBSP3 (HYA22) is a tumor suppressor gene implicated in major epithelial malignancies. Proc. Natl. Acad. Sci. U. S. A. 101, 4906–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beniaminov A.D., Krasnov G.S., Dmitriev A.A., Puzanov G.A., Snopok B.A., Senchenko V.N., Kashuba V.I. 2016. Interaction of two tumor suppressor proteins, phosphatase CTDSPL and Rb. Mol. Biol. 50, 438–441.

    Article  CAS  Google Scholar 

  12. Travis W.D., Brambilla E., Muller-Hermelink H.K., et al. 2004. World Health Organization Classification of Tumours. Pathology anf Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: IARC Press.

    Google Scholar 

  13. Minna J., Girard L., Xie Y. 2007. Tumor mRNA expression profiles predict responses to chemotherapy. J. Clin. Oncol. 48, 4329–4336.

    Article  Google Scholar 

  14. Girard L., Rodriguez-Canales J., Minna J.D., et al. 2016. An expression signature as an aid to the histological classification of non-small cell lung cancer. Clin. Cancer Res. 22, 4880–4889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Russell P.A., Wainer Z., Wright G.M., et al. 2011. Does lung adenocarcinoma subtype predict patient survival?: A clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Lung Adenocarcinoma Classification. J. Thoracic Oncol: Official Publ. Internat. Assoc. Study Lung Cancer. 6, 1496–1504.

    Article  Google Scholar 

  16. Fischer A.H., Cibas E.S., Howell L.P., et al. 2011. Role of cytology in the management of non-small-cell lung cancer. J. Clin. Oncol: Official J. Am. Soc. Clin. Oncol. 29, 3332–3333.

    Article  Google Scholar 

  17. Di Fiore R., D’Anneo A., Tesoriere G., et al. 2013. RB1 in cancer: Different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J. Cell. Physiol. 228, 1676–1687.

    Article  PubMed  Google Scholar 

  18. Akli S., Keyomarsi K. 2003. Cyclin E and its low molecular weight forms in human cancer and as targets for cancer therapy. Cancer Biol. Therapy. 2 (4, Suppl. 1), S38–S47.

    CAS  Google Scholar 

  19. Komiya T., Hosono Y., Hirashima T., et al. 1997. p21 expression as a predictor for favorable prognosis in squamous cell carcinoma of the lung. Clin. Cancer. Res. 3, 1831–1835.

    CAS  PubMed  Google Scholar 

  20. Zhu Y., Lu Y., Zhang Q., et al. 2012. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 40, 4615–4625.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Senchenko.

Additional information

Original Russian Text © G.S. Krasnov, G.A. Puzanov, A.V. Kudryavtseva, A.A. Dmitriev, A.D. Beniaminov, T.T. Kondratieva, V.N. Senchenko, 2017, published in Molekulyarnaya Biologiya, 2017, Vol. 51, No. 5, pp. 849–856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, G.S., Puzanov, G.A., Kudryavtseva, A.V. et al. Differential expression of an ensemble of the key genes involved in cell-cycle regulation in lung cancer. Mol Biol 51, 740–747 (2017). https://doi.org/10.1134/S0026893317050107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893317050107

Keywords

Navigation