Skip to main content
Log in

Effectiveness of Photogem® activated by LED on the decontamination of artificial carious bovine dentin

  • Laser Methods in Biology and Medicine
  • Published:
Laser Physics

Abstract

The aim of this study was the evaluation of the effectiveness of photodynamic therapy on the decontamination of artificially induced carious bovine dentin, using Photogem® as the photosensitizer agent and an LED device as a light source. Dentin samples obtained from bovine incisors were immersed in sterile broth supplemented by Lactobacillus acidophillus 108 colony formation units (CFU) and Streptococcus mutans 108 CFU. Different concentrations of photosensitizer, PA = 1 mg/ml, PB = 2 mg/ml, and PC = 3 mg/ml, and two fluences, D = 24 J/cm2 and D = 48 J/cm2, were investigated. After CFU counting per milligram of carious dentin and statistical analysis, we observed that the photodynamic therapy (PDT) parameters used were effective for bacterial reduction in the in vitro model under study. The best result was achieved with the application of Photogem® at 2 mg/ml and photoactivated under 24 J/cm2 showing a survival factor of 0.14. At higher photosensitizer concentrations, a higher dark toxicity was observed. We propose a simple mathematical expression for the determination of PDT parameters of photosensitizer concentration and light fluence for different survival factor values. Since LED devices are simpler and cheaper compared to laser systems, it would be interesting to verify their efficacy as a light source in photodynamic therapy for the decontamination of carious dentin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, G. B. Grindy, R. Field, et al., J. Natl. Cancer Inst. 55, 115 (1975).

    Google Scholar 

  2. S. G. Granelli, I. Diamopnd, A. F. McDonagh, et al., Cancer Res. 35, 2567 (1975).

    Google Scholar 

  3. T. Burns, M. Wilson, and G. J. Pearson, J. Med. Microbiol. 38, 401 (1993).

    Article  Google Scholar 

  4. J. Dobson and M. Wilson, Arch. Oral Biol. 37, 883 (1992).

    Article  Google Scholar 

  5. H. Okamoto, T. Iwase, and T. Marioka, Lasers Surg. Med. 12, 450 (1992).

    Google Scholar 

  6. M. Wilson, J. Dobson, and S. Sarkar, Oral Microbiol. Immunol. 8, 182 (1993).

    Google Scholar 

  7. M. Wilson, J. Appl. Bacteriol. 75, 299 (1993).

    Google Scholar 

  8. M. Wilson, Int. Dent. J. 44, 181 (1994).

    Google Scholar 

  9. M. Wilson, T. Burns, J. Pratten, and G. J. Pearson, J. Appl. Bacteriol., 78, 569 (1995).

    Google Scholar 

  10. L. Bjorndal, T. Larsen, and A. Thylstrup, Caries Res. 31, 411 (1997).

    Google Scholar 

  11. E. A. M. Kidd, S. Joyston-Bechal, and D. Beighton, Caries Res. 27, 402 (1993).

    Google Scholar 

  12. E. A. M. Kidd, D. N. J. Ricketts, and D. Beighton, Br. Dent. J. 180, 287 (1996).

    Article  Google Scholar 

  13. A. J. P. van Trijp, T. J. M. van Streenbergen, and J. M. Ten Cate, Caries Res. 28, 21 (1994).

    Google Scholar 

  14. J. A. Williams, G. J. Pearson, M. J. Colles, and M. Wilson, Caries Res. 37, 190 (2003).

    Article  Google Scholar 

  15. T. Burns, M. Wilson, and G. J. Pearson, Caries Res. 29, 192 (1995).

    Article  Google Scholar 

  16. J. A. Williams, G. J. Pearson, M. J. Colles, and M. Wilson, Caries Res. 38, 530 (2004).

    Article  Google Scholar 

  17. I. C. Zanin, R. B. Gonçalves, A. B. Vjunior, et al., J. Antimicrob Chemother. 56, 324 (2005).

    Article  Google Scholar 

  18. H. Lui, L. Hoobs, W. D. Topr, et al., Arch. Dermatol. 140, 26 (2004).

    Article  Google Scholar 

  19. J. C. Tsai, C. P. Chiang, N. M. Chen, et al., Lasers Surg. Med. 34, 18 (2004).

    Article  Google Scholar 

  20. C. H. Sibata, V. C. Colussi, N. L. Oleinick, and T. J. Kinsella, Braz. J. Med. 33, 869 (2000).

    Google Scholar 

  21. F. R. Venezio, C. Divincenzo, R. Sherman, et al., J. Infect. Dis. 151, 166 (1985).

    Google Scholar 

  22. G. Bertolini, S. Benedetto, M. Dall’Acqua, et al., Photochem. Photobiol. 39, 811 (2004).

    Google Scholar 

  23. Z. Malik, H. Judith, and Y. J. Nitzan, J. Photochem. Photobiol., B 5, 281 (1990).

    Article  Google Scholar 

  24. Y. Nitzan, M. Gutterman, Z. Malik, and B. Ehrenberg, Photochem. Photobiol. 55, 89 (1992).

    Google Scholar 

  25. M. Merchat, G. Bertolini, P. Giacomini, et al., J. Photochem. Photobiol., B 32, 153 (1996).

    Article  Google Scholar 

  26. M. Wainwright, J. Antimicrob Chemother. 42, 13 (1998).

    Article  Google Scholar 

  27. J. A. Williams, G. J. Pearson, M. J. Colles, and M. Wilson, Caries Res. 37, 190 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Text © Astro, Ltd., 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giusti, J.S.M., Santos-Pinto, L., Pizzolitto, A.C. et al. Effectiveness of Photogem® activated by LED on the decontamination of artificial carious bovine dentin. Laser Phys. 16, 859–864 (2006). https://doi.org/10.1134/S1054660X06050185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X06050185

PACS numbers

Navigation