Skip to main content
Log in

Can efficiency of the photosensitizer be predicted by its photostability in solution?

  • Laser Methods in Chemistry, Biology, and Medicine
  • Published:
Laser Physics

Abstract

We have investigated a possible correlation between the photostability and photodynamic efficacy for different photosensitizers; hematoporphyrin derivatives and chlorines. To perform such analysis, we combined the depth of necrosis (d nec) measurement, expressed by the light threshold dose and a photodegradation parameter, measured from investigation of photosensitizer degradation in solution. The d nec analysis allows us to determine the light threshold dose and compare its value with the existent results in the literature. The use of simple models to understand basic features of Photodynamic Therapy (PDT) may contribute to the solid establishment of dosimetry in PDT, enhancing its use in the clinical management of cancers and others lesions. Using hematoporphyrin derivatives and chlorines photosensitizers we investigated their properties related to the photodegradation in solution and the light threshold dose (D th) in rat livers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hopper, Lancet Oncol. 1, 212–219 (2000).

    Article  Google Scholar 

  2. S. B. Brown, E. A. Brown, and I. Walker, Lancet Oncol.5, 497 (2004).

    Article  Google Scholar 

  3. C. H. Sibata, V. C. Colussi, N. L. Oleinick, and T. J. Kinsella, Braz. J. Med. Biol. Res. 33, 869 (2000).

    Article  Google Scholar 

  4. B. W. Henderson and T. J. Dougherty, Photochem. Photobiol. 55, 145 (1992).

    Article  Google Scholar 

  5. J. Schlothauer, S. Hackbarth, and B. Roder, Laser Phys. Lett. 6, 216 (2009).

    Article  Google Scholar 

  6. R. R. Allison, G. H. Downie, R. Cuenca, X. H. Hu, C. J. H. Childs, and C. H. Sibata, Photodiag. Photodyna. Ther. 1, 27 (2004).

    Article  Google Scholar 

  7. R. R. Allison, G. H. Downie, R. E. Cuenca, and C. H. Sibata, Photodiag. Photodyna. Ther. 3, 214 (2006).

    Article  Google Scholar 

  8. Y. Y. Tian, D. D. Xu, X. Tian, F. A. Cui, H. Q. Yuan, and W. N. Leung, Laser Phys. Lett. 5, 746 (2008).

    Article  Google Scholar 

  9. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, et al., J. Natl. Cancer Inst. 90,889 (1998).

    Article  Google Scholar 

  10. Y. Y. Tian, F. Kong, X. Tian, Q. Guo, and F. A. Cui, Laser Phys. Lett. 5, 764 (2008).

    Article  Google Scholar 

  11. V. I. Chissov, V. V. Sokolov, E. V. Filonenko, V. D. Menenkov, N. N. Zharkova, D. N. Kozlov, et al., Khirurgiya (Moscow), No. 5, 37 (1995).

  12. K. Taari, M. Talja, M. Riihela, S. Rannikko, and R. Mokka, Br. J. Urol. 70, 616 (1992).

    Article  Google Scholar 

  13. R. S. Cavalcante, H. Imasato, V. S. Bagnato, and J. R. Perussi, Laser Phys. Lett. 6, 64 (2009).

    Article  Google Scholar 

  14. D. E. Dolmans, D. Fukumura, and R. K. Jain, Nat. Rev. Cancer 3, 380–387 (2003).

    Article  Google Scholar 

  15. S. Banfi, E. Caruso, S. Caprioli, L. Mazzagatti, G. Canti, R. Ravizza, et al., Bioorg. Med. Chem. 12,4853 (2004).

    Article  Google Scholar 

  16. M. Angotti, B. Maunit, J. F. Muller, L. Bezdetnaya, and F. Guillemin, J. Mass. Spectrom. 36, 825–831 (2001).

    Article  Google Scholar 

  17. M. G. Strakhovskaya, N. S. Belenikina, E. V. Ivanova, Y. K. Chemeris, and E. F. Stranadko, Microbiology 71,298 (2002).

    Article  Google Scholar 

  18. M. G. Strakhovskaya, V. G. Zhukhovitskii, A. F. Mironov, A. M. Seregin, E. F. Stranadko, and A. B. Rubin, Dokl. Biochem. Biophys. 384, 155 (2002).

    Article  Google Scholar 

  19. F. Vargas, Y. Diaz, V. Yartsev, A. Marcano, and A. Lappa, Ciencia 12, 70 (2004).

    Google Scholar 

  20. C. Hopper, A. Kubler, H. Lewis, I. B Tan, and G. Putnam, Int. J. Cancer 111, 138 (2004).

    Article  Google Scholar 

  21. J. Ferreira, P. F. C. Menezes, C. Kurachi, C. H. Sibata, R. R. Allison, and V. S. Bagnato, Laser Phys. Lett. 4,743 (2007).

    Article  Google Scholar 

  22. R. Rotomskis, S. Bagdonas, G. Streckyte, R. Wendenburg, W. Dietel, J. Didziapetriene, et al., Lasers Med. Sci. 13, 271 (1998).

    Article  Google Scholar 

  23. R. Bonnett and G. Martinez, Tetrahedron 57, 9513–9547 (2001).

    Article  Google Scholar 

  24. J. Ferreira, P. F. C. Menezes, C. Kurachi, C. Sibata, R. R. Allison, and V. S. Bagnato, Laser Phys. Lett. 5,156 (2008).

    Article  Google Scholar 

  25. P. F. C. Menezes, C. A. S. Melo, V. S. Bagnato, H. Imasato, and J. R. Perussi, Laser Phys. 15, 435 (2005).

    Google Scholar 

  26. P. F. C. Menezes, H. Imasato, J. Ferreira, V. S. Bagnato, and J. R. Perussi, Laser Phys. 17, 461 (2007).

    Article  ADS  Google Scholar 

  27. P. F. C. Menezes, V. S. Bagnato, R. M. Johnke, C. Bonnerup, C. H. Sibata, R. R. Alisson, and J. R. Perussi, Laser Phys. Lett. 4, 546 (2007).

    Article  Google Scholar 

  28. L. Lilge and B. C. Wilson, J. Clin. Laser. Med. Surg. 16,81 (1998).

    Google Scholar 

  29. J. Ferreira, C. Kurachi, L. T. Moriyama, P. F. C. Menezes, J. R. Perussi, C. Sibata, et al., Laser Phys. Lett. 3,91 (2006).

    Article  Google Scholar 

  30. C. A. S. Melo, C. Kurachi, C. Grecco, C. H. Sibata, O. Castro e Silva, and V. S. Bagnato, J. Photochem. Photobiol. B: Biol. 73, 183 (2004).

    Article  Google Scholar 

  31. J. Ferreira, Univ. de São Paulo: Ribeirão Preto (2007), p. 123.

  32. J. Ferreira, Univ. de São Paulo: Ribeirão Preto (2003), p. 99.

  33. J. Ferreira, L. T. Moriyama, C. Kurachi, C. Sibata, O. Castro e Silva, Jr., S. Zucoloto, and V. S. Bagnato, Laser Phys. Lett. 4, 469 (2007).

    Article  Google Scholar 

  34. R. Rotomskis, E. J. Vandemeent, T. J. Aartsma, and A. J. Hoff, J. Photochem. Photobiol. B: Biol. 3, 369 (1989).

    Article  Google Scholar 

  35. F. Cordoba, L. R. Braathen, J. Weissenberger, C. Vallan, M. Kato, I. Nakashima, et al., Exp. Dermatol. 14,429 (2005).

    Article  Google Scholar 

  36. P. F. C. Menezes, H. Imasato, J. Ferreira, V. S. Bagnato, C. H. Sibata, and J. R. Perussi, Laser Phys. Lett. 5, 227 (2008).

    Article  Google Scholar 

  37. L. B. Li and R. C. Luo, Lasers Med Sci. (Epub ahead of print, 2008).

  38. A. B. Uzdensky, O. Y. Dergacheva, A. A. Zhavoronkova, A. V. Reshetnikov, and G. V. Ponomarev, Life Sci. 74, 2185 (2004).

    Article  Google Scholar 

  39. H. Rezzoug, L. Bezdetnaya, O. A’amar, J. L. Merlin, and F. Guillemin, Lasers Med. Sci. 13, 119 (1998).

    Article  Google Scholar 

  40. J. D. Vollet-Filho, P. C. F. Menezes, L. T. Moriyama, C. Grecco, C. Sibata, R. R. Allison, et al., J. Appl. Phys. 105(10), 105038 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. F. C. Menezes.

Additional information

Original Russian Text © Astro, Ltd., 2009.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, J., Menezes, P.F.C., Sibata, C.H. et al. Can efficiency of the photosensitizer be predicted by its photostability in solution?. Laser Phys. 19, 1932–1938 (2009). https://doi.org/10.1134/S1054660X09170071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1054660X09170071

PACS numbers

Navigation