skip to main content
research-article

Septic Shock Prediction for Patients with Missing Data

Published:01 April 2014Publication History
Skip Abstract Section

Abstract

Sepsis and septic shock are common and potentially fatal conditions that often occur in intensive care unit (ICU) patients. Early prediction of patients at risk for septic shock is therefore crucial to minimizing the effects of these complications. Potential indications for septic shock risk span a wide range of measurements, including physiological data gathered at different temporal resolutions and gene expression levels, leading to a nontrivial prediction problem. Previous works on septic shock prediction have used small, carefully curated datasets or clinical measurements that may not be available for many ICU patients. The recent availability of a large, rich ICU dataset called MIMIC-II has provided the opportunity for more extensive modeling of this problem. However, such a large clinical dataset inevitably contains a substantial amount of missing data. We investigate how different imputation selection criteria and methods can overcome the missing data problem. Our results show that imputation methods in conjunction with predictive modeling can lead to accurate septic shock prediction, even if the features are restricted primarily to noninvasive measurements. Our models provide a generalized approach for predicting septic shock in any ICU patient.

References

  1. Allgöwer, M. and Burri, C. 1967. Schockindex. Deutsche Medizinische Wodenschrif 46, 1--10.Google ScholarGoogle Scholar
  2. Arabi, Y. Y., Al Shirawi, N. N., Memish, Z. Z., Venkatesh, S. S., and Al-Shimemeri, A. A. 2003. Assessment of six mortality prediction models in patients admitted with severe sepsis and septic shock to the intensive care unit: A prospective cohort study. Critical Care 7, 5, R116--R122.Google ScholarGoogle ScholarCross RefCross Ref
  3. Batal, I., Fradkin, D., Harrison, J., Moerchen, F., and Hauskrecht, M. 2012. Mining recent temporal patterns for event detection in multivariate time series data. In Proceeding of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12). ACM Press, New York, 280--288. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., Schein, R. M., and Sibbald, W. J. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101, 6, 1644--1655.Google ScholarGoogle ScholarCross RefCross Ref
  5. Cremonesi, P., Koren, Y., and Turrin, R. 2010. Performance of recommender algorithms on top-n recommendation tasks. In Proceedings of the 4th ACM Conference on Recommender Systems. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Ferreira, F., Bota, D., Bross, A., Mélot, C., and Vincent, J. 2001. Serial evaluation of the SOFA score to predict outcome in critically ill patients. J. Amer. Med. Assoc. 286, 14, 1754.Google ScholarGoogle ScholarCross RefCross Ref
  7. Fialho, A. S., Cismondi, F., Vieira, S. M., Sousa, J. M. C., Reti, S. R., and Howell, M. D. 2010. Predicting outcomes of septic shock patients using feature selection based on soft computing techniques. In Proceedings of the 13th Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. Springer, 65--74.Google ScholarGoogle Scholar
  8. Friedman, J., Hastie, T., and Tibshirani, R. 2010. Regularization paths for generalized linear models via coordinate descent. J. Statist. Softw. 33, 1, 1--22.Google ScholarGoogle ScholarCross RefCross Ref
  9. Hall, M. J., Williams, S. N., DeFrances, C. J., and Golosinskiy, A. 2011. Inpatient care for septicemia or sepsis: A challenge for patients and hospitals. NCHS Data Brief 62, 1--8.Google ScholarGoogle Scholar
  10. Hastie, T., Tibshirani, R., and Friedman, J. H. 2008. The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer.Google ScholarGoogle Scholar
  11. Hastie, T., Tibshirani, R., Narasimhan, B., and Chu, G. 2012. Impute: Imputation for microarray data. R package version 1.30.0.Google ScholarGoogle Scholar
  12. Ho, J. C., Lee, C. H., and Ghosh, J. 2012. Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD Workshop on Health Informatics (HI-KDD’12).Google ScholarGoogle Scholar
  13. Jerez, J. M., Molina, I., García-Laencina, P. J., Alba, E., Ribelles, N., Martín, M., and Franco, L. 2010. Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 50, 2, 11--11. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Kennedy, C. E. and Turley, J. P. 2011. Time series analysis as input for clinical predictive modeling: Modeling cardiac arrest in a pediatric ICU. Theor. Biol. Med. Model. 8, 40.Google ScholarGoogle ScholarCross RefCross Ref
  15. Kumar, A., Roberts, D., Wood, K. E., Light, B., Parrillo, J. E., Sharma, S., Suppes, R., Feinstein, D., Zanotti, S., Taiberg, L., Gurka, D., Kumar, A., and Cheang, M. 2006. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Critical Care Med. 34, 6, 1589--1596.Google ScholarGoogle ScholarCross RefCross Ref
  16. Lagu, T., Lindenauer, P. K., Rothberg, M. B., Nathanson, B. H., Pekow, P. S., Steingrub, J. S., and Higgins, T. L. 2011. Development and validation of a model that uses enhanced administrative data to predict mortality in patients with sepsis. Critical Care Med. 39, 11, 2425--2430.Google ScholarGoogle ScholarCross RefCross Ref
  17. Le Gall, J. R., Loirat, P., Alperovitch, A., Glaser, P., Granthil, C., Mathieu, D., Mercier, P., Thomas, R., and Villers, D. 1984. A simplified acute physiology score for ICU patients. Critical Care Med. 12, 11, 975--977.Google ScholarGoogle ScholarCross RefCross Ref
  18. Lukaszewski, R. A., Yates, A. M., Jackson, M. C., Swingler, K., Scherer, J. M., Simpson, A. J., Sadler, P., McQuillan, P., Titball, R. W., Brooks, T. J. G., and Pearce, M. J. 2008. Presymptomatic prediction of sepsis in intensive care unit patients. Clinical Vacc. Immun. 15, 7, 1089--1094.Google ScholarGoogle ScholarCross RefCross Ref
  19. Nanni, L., Lumini, A., and Brahnam, S. 2012. A classifier ensemble approach for the missing feature problem. Artif. Intell. Med. 55, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Nguyen, H. B., Corbett, S. W., Steele, R., Banta, J., Clark, R. T., Hayes, S. R., Edwards, J., Cho, T. W., and Wittlake, W. A. 2007. Implementation of a bundle of quality indicators for the early management of severe sepsis and septic shock is associated with decreased mortality. Critical Care Med. 35, 4, 1105--1112.Google ScholarGoogle ScholarCross RefCross Ref
  21. Paetz, J. 2003. Knowledge-based approach to septic shock patient data using a neural network with trapezoidal activation functions. Artif. Intell. Med. 28, 2, 207--230. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Pereira, R., Almeida, R., Kaymak, U., Vieira, S., Sousa, J., Reti, S., Howell, M., and Finkelstein, S. 2011. Predicting septic shock outcomes in a database with missing data using fuzzy modeling: Influence of pre-processing techniques on real-world data-based classification. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ’11). 2507--2512.Google ScholarGoogle Scholar
  23. Ribas, V. J., Vellido, A., Ruiz-Rodríguez, J. C., and Rello, J. 2012. Severe sepsis mortality prediction with logistic regression over latent factors. Expert Syst. Appl. Int. J. 39, 2. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin, A., Knoblich, B., Peterson, E., Tomlanovich, M., and Early Goal-Directed Therapy Collaborative Group. 2001. Early goal-directed therapy in the treatment of severe sepsis and septic shock. New England J. Med. 345, 19, 1368--1377.Google ScholarGoogle ScholarCross RefCross Ref
  25. Roweis, S. 1998. EM algorithms for PCA and SPCA. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS’98). 626--632. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Saeed, M., Villarroel, M., Reisner, A. T., Clifford, G., Lehman, L.-W., Moody, G., Heldt, T., Kyaw, T. H., Moody, B., and Mark, R. G. 2011. Multiparameter intelligent monitoring in intensive care ii (mimic-ii): A public-access intensive care unit database. Critical Care Med. 39, 5, 952--960.Google ScholarGoogle ScholarCross RefCross Ref
  27. Shavdia, D. 2007. Septic shock: Providing early warnings through multivariate logistic regression models. Tech. rep., Harvard-MIT Division of Health Sciences and Technology.Google ScholarGoogle Scholar
  28. Stacklies, W., Redestig, H., Scholz, M., Walther, D., and Selbig, J. 2007. PcaMethods--A bioconductor package providing PCA methods for incomplete data. Bioinf. 23, 9, 1164--1167. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Thiel, S. W., Rosini, J. M., Shannon, W., Doherty, J. A., Micek, S. T., and Kollef, M. H. 2010. Early prediction of septic shock in hospitalized patients. J. Hospital Med. 5, 1, 19--25.Google ScholarGoogle ScholarCross RefCross Ref
  30. Troyanskaya, O. G., Cantor, M., Sherlock, G., Brown, P. O., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B. 2001. Missing value estimation methods for DNA microarrays. Bioinf. 17, 6, 520--525.Google ScholarGoogle ScholarCross RefCross Ref
  31. Wang, F., Lee, N., Hu, J., Sun, J., and Ebadollahi, S. 2012. Towards heterogeneous temporal clinical event pattern discovery: A convolutional approach. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12). Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. WSD Coalition. 2012. The world sepsis day fact sheet. http://www.world-sepsis-day.org/.Google ScholarGoogle Scholar

Index Terms

  1. Septic Shock Prediction for Patients with Missing Data

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM Transactions on Management Information Systems
          ACM Transactions on Management Information Systems  Volume 5, Issue 1
          April 2014
          106 pages
          ISSN:2158-656X
          EISSN:2158-6578
          DOI:10.1145/2603738
          Issue’s Table of Contents

          Copyright © 2014 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 1 April 2014
          • Revised: 1 November 2013
          • Accepted: 1 November 2013
          • Received: 1 December 2012
          Published in tmis Volume 5, Issue 1

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • research-article
          • Research
          • Refereed

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader