skip to main content
10.1145/2647868.2654933acmconferencesArticle/Chapter ViewAbstractPublication PagesmmConference Proceedingsconference-collections
research-article

Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits

Published:03 November 2014Publication History

ABSTRACT

Research has proven that stress reduces quality of life and causes many diseases. For this reason, several researchers devised stress detection systems based on physiological parameters. However, these systems require that obtrusive sensors are continuously carried by the user. In our paper, we propose an alternative approach providing evidence that daily stress can be reliably recognized based on behavioral metrics, derived from the user's mobile phone activity and from additional indicators, such as the weather conditions (data pertaining to transitory properties of the environment) and the personality traits (data concerning permanent dispositions of individuals). Our multifactorial statistical model, which is person-independent, obtains the accuracy score of 72.28% for a 2-class daily stress recognition problem. The model is efficient to implement for most of multimedia applications due to highly reduced low-dimensional feature space (32d). Moreover, we identify and discuss the indicators which have strong predictive power.

References

  1. G. Bauer and P. Lukowicz. Can smartphones detect stress-related changes in the behaviour of individuals? In Pervasive Computing and Communications Workshops (PERCOM Workshops), 2012 IEEE International Conference on, pages 423--426. IEEE, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. Bogomolov, B. Lepri, and F. Pianesi. Happiness recognition from mobile phone data. Proceedings of the 2013 International Conference on Social Computing (SocialCom 2013), pages 790--795, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. N. Bolger and E. A. Schilling. Personality and the problems of everyday life: The role of neuroticism in exposure and reactivity to daily stressors. Journal of Personality, 59(3):355--386, 1991.Google ScholarGoogle ScholarCross RefCross Ref
  4. G. E. P. Box and D. R. Cox. An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2):211--252, 1964.Google ScholarGoogle ScholarCross RefCross Ref
  5. L. Breiman. Random forests. Mach. Learn., 45(1):5--32, Oct. 2001. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. G. Chittaranjan, J. Blom, and D. Gatica-Perez. Mining large-scale smartphone data for personality studies. Personal Ubiquitous Comput., 17(3):433--450, Mar. 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. J. Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1):37--46, Apr. 1960.Google ScholarGoogle ScholarCross RefCross Ref
  8. S. Cohen, K. R. C., and L. U. Gordon. Measuring stress: A guide for health and social scientists. Oxford University Press, USA, 1997.Google ScholarGoogle Scholar
  9. R. de Oliveira, A. Karatzoglou, P. Concejero Cerezo, A. Armenta Lopez de Vicu na, and N. Oliver. Towards a psychographic user model from mobile phone usage. In CHI'11 Extended Abstracts on Human Factors in Computing Systems, pages 2191--2196. ACM, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Denissen, L. Butalid, L. Penke, and M. Van Aken. The effects of weather on daily mood: A multilevel approach. Emotion Researcher, 8(5):662--667, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. W. Dong, B. Lepri, and A. Pentland. Modeling the co-evolution of behaviors and social relationships using mobile phone data. In MUM, pages 134--143, 2011. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Duggan, P. Sham, A. Lee, C. Minne, and R. Murray. Neuroticism: a vulnerability marker for depression evidence from a family study. Journal of Affective Disorders, 35(3):139 -- 143, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  13. N. Eagle and A. Pentland. Reality mining: sensing complex social systems. Personal and Ubiquitous Computing, 10(4):255--268, 2006. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. N. Eagle, A. S. Pentland, and D. Lazer. Inferring friendship network structure by using mobile phone data. Proceedings of the National Academy of Sciences, 106(36):15274--15278, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  15. V. Faust, M. Weidmann, and W. Wehner. The influence of meteorological factors on children and youths: A 10% random selection of 16,000 pupils and apprentices of basle city (switzerland). Acta Paedopsychiatrica: International Journal of Child & Adolescent Psychiatry, 1974.Google ScholarGoogle Scholar
  16. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119 -- 139, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. S. Garcia and F. Herrera. An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons. Journal of Machine Learning Research, 9:2677--2694, Dec. 2008.Google ScholarGoogle Scholar
  18. D. Giakoumis, A. Drosou, P. Cipresso, D. Tzovaras, G. Hassapis, A. Gaggioli, and G. Riva. Real-time monitoring of behavioural parameters related to psychological stress. Studies in health technology and informatics, 181:287, 2012.Google ScholarGoogle Scholar
  19. M. Gonzalez, C. Hidalgo, and L. Barabasi. Understanding individual mobility patterns. Nature, 453(7196):779--782, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  20. W. J. Goode. A theory of role strain. American Sociological Review, 25(4):pp. 483--496, 1960.Google ScholarGoogle ScholarCross RefCross Ref
  21. L. H. A. S. Gunthert, Kathleen Cimbolic; Cohen. The role of neuroticism in daily stress and coping. Journal of Personality and Social Psychology, 77:1087--1100, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. Hardt and H. Gerbershagen. No changes in mood with the seasons: observations in 3000 chronic pain patients. Acta Psychiatrica Scandinavica, 100(4):288--294, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  23. J. Healey and R. Picard. Detecting stress during real-world driving tasks using physiological sensors. Intelligent Transportation Systems, IEEE Transactions on, 6(2):156--166, 2005. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. E. Howarth and M. S. Ho man. A multidimensional approach to the relationship between mood and weather. British Journal of Psychology, 75(1):15--23, 1984.Google ScholarGoogle ScholarCross RefCross Ref
  25. O. P. John and S. Srivastava. The Big Five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin and O. P. John, editors, Handbook of Personality: Theory and Research, pages 102--138. Guilford Press, New York, second edition, 1999.Google ScholarGoogle Scholar
  26. E. Jovanov, A. O'Donnell Lords, D. Raskovic, P. Cox, R. Adhami, and F. Andrasik. Stress monitoring using a distributed wireless intelligent sensor system. Engineering in Medicine and Biology Magazine, IEEE, 22(3):49--55, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  27. D. Krackhardt. The strength of strong ties: The importance of philos in organizations. pages 216--239, 1992.Google ScholarGoogle Scholar
  28. C. Krumme, A. Llorente, M. Cebrian, A. Pentland, and E. Moro. The predictability of consumer visitation patterns. Scientific Reports, (1645), 2013.Google ScholarGoogle Scholar
  29. N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T. Campbell. A survey of mobile phone sensing. IEEE Communications Magazine, 48(9):140--150, 2010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. N. Lathia, K. K. Rachuri, C. Mascolo, and P. J. Rentfrow. Contextual dissonance: Design bias in sensor-based experience sampling methods. Proceedings of Ubicomp 2013, pages 183--192, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. Moodscope: building a mood sensor from smartphone usage patterns. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services, MobiSys '13, pages 389--402, New York, NY, USA, 2013. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. H. Lu, D. Frauendorfer, M. Rabbi, M. S. Mast, G. T. Chittaranjan, A. T. Campbell, D. Gatica-Perez, and T. Choudhury. Stresssense: detecting stress in unconstrained acoustic environments using smartphones. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, UbiComp '12, pages 351--360, New York, NY, USA, 2012. ACM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. A. Madan, M. Cebri an, S. T. Moturu, K. Farrahi, and A. Pentland. Sensing the "health state" of a community. IEEE Pervasive Computing, 11(4):36--45, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. D. Majoe, P. Bonhof, T. Kaegi-Trachsel, J. Gutknecht, and L. Widmer. Stress and sleep quality estimation from a smart wearable sensor. In Pervasive Computing and Applications (ICPCA), 2010 5th International Conference on, pages 14--19, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  35. G. Miller. Note on the bias of information estimates. Information theory in psychology: Problems and methods, 2(95):100, 1955.Google ScholarGoogle Scholar
  36. G. Miller. The smartphone psychology manifesto. Perspectives on Psychological Science, 7(3):221--237, 2012.Google ScholarGoogle ScholarCross RefCross Ref
  37. Y.-A. Montjoye, J. Quoidbach, F. Robic, and A. Pentland. Predicting personality using novel mobile phone-based metrics. In A. Greenberg, W. Kennedy, and N. Bos, editors, Social Computing, Behavioral-Cultural Modeling and Prediction, volume 7812 of Lecture Notes in Computer Science, pages 48--55. Springer Berlin Heidelberg, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. A. Muaremi, B. Arnrich, and G. Tröster. A survey on measuring happiness with smart phones. In 6th International Workshop on Ubiquitous Health and Wellness (UbiHealth 2012), 2012.Google ScholarGoogle Scholar
  39. K. Plarre, A. Raij, S. Hossain, A. Ali, M. Nakajima, M. Al'absi, E. Ertin, T. Kamarck, S. Kumar, M. Scott, D. Siewiorek, A. Smailagic, and L. Wittmers. Continuous inference of psychological stress from sensory measurements collected in the natural environment. In Information Processing in Sensor Networks (IPSN), 2011 10th International Conference on, pages 97--108, 2011.Google ScholarGoogle Scholar
  40. D. Quercia, J. Ellis, L. Capra, and J. Crowcroft. Tracking "gross community happiness" from tweets. In CSCW, pages 965--968, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. J. L. Sanders and M. S. Brizzolara. Relationships between weather and mood. The Journal of General Psychology, 107(1):155--156, 1982.Google ScholarGoogle ScholarCross RefCross Ref
  42. A. Sano and R. W. Picard. Stress recognition using wearable sensors and mobile phones. Proceedings of the 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, pages 671--676, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. K. R. Scherer, D. Grandjean, T. Johnstone, G. Klasmeyer, and T. Bänziger. Acoustic correlates of task load and stress. In INTERSPEECH, 2002.Google ScholarGoogle Scholar
  44. R. Sinatra and M. Szell. Entropy and the predictability of online life. Entropy, (16):543--556, 2014.Google ScholarGoogle Scholar
  45. S. R. Singh, H. A. Murthy, and T. A. Gonsalves. Feature selection for text classification based on gini coefficient of inequality. Journal of Machine Learning Research-Proceedings Track, 10:76--85, 2010.Google ScholarGoogle Scholar
  46. V. K. Singh, L. Freeman, B. Lepri, and A. S. Pentland. Predicting spending behavior using socio-mobile features. In Social Computing (SocialCom), 2013 International Conference on, pages 174--179. IEEE, 2013. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. C. Song, Z. Qu, N. Blumm, and A. Barabasi. Limits of predictability in human mobility. Science, (327):1018--1021, 2010.Google ScholarGoogle Scholar
  48. J. Staiano, B. Lepri, N. Aharony, F. Pianesi, N. Sebe, and A. Pentland. Friends don't lie: inferring personality traits from social network structure. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pages 321--330. ACM, 2012. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. A. Stopczynski, V. Sekara, P. Sapiezynski, A. Cuttone, M. M. Madsen, J. E. Larsen, and S. Lehmann. Measuring large-scale social networks with high resolution. PLoS ONE, (9), 2014.Google ScholarGoogle Scholar
  50. J. Suls, P. Green, and S. Hillis. Emotional reactivity to everyday problems, affective inertia, and neuroticism. Personality and Social Psychology Bulletin, 24(2):127--136, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  51. E. Tuv, A. Borisov, G. Runger, and K. Torkkola. Feature selection with ensembles, artificial variables, and redundancy elimination. The Journal of Machine Learning Research, 10:1341--1366, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. M. Vollrath and S. Torgersen. Personality types and coping. Personal. Individ. Differ., 29:367--378, 2000.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      MM '14: Proceedings of the 22nd ACM international conference on Multimedia
      November 2014
      1310 pages
      ISBN:9781450330633
      DOI:10.1145/2647868

      Copyright © 2014 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 November 2014

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article

      Acceptance Rates

      MM '14 Paper Acceptance Rate55of286submissions,19%Overall Acceptance Rate995of4,171submissions,24%

      Upcoming Conference

      MM '24
      MM '24: The 32nd ACM International Conference on Multimedia
      October 28 - November 1, 2024
      Melbourne , VIC , Australia

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader