1932

Abstract

Somatic activating mutations in the B-Raf kinase (BRAF mutations) are present in hairy-cell leukemia, cutaneous melanoma, thyroid carcinomas and, less commonly, in ovarian, colon, lung, and other malignancies. These mutations—in particular the most common substitution, V600E—are oncogenic drivers and important therapeutic targets. The development of small-molecule Raf inhibitors allowed rapid translation of basic advances to the clinic. In BRAF-mutant melanomas, orally bioavailable B-Raf inhibitors, such as vemurafenib, achieve dramatic responses initially, but this is followed by rapid emergence of resistance driven by numerous mechanisms and requiring second-generation treatment approaches. In tumors with wild-type B-Raf, vemurafenib paradoxically activates downstream signaling and cell proliferation and is thus contraindicated, highlighting again the importance of genotype-based clinical decision making. These advances were greatly facilitated by the study of biopsied tumor tissue, especially at the time of drug resistance. Combinatorial approaches targeting the Raf pathway hold promise for even more substantial clinical benefits in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-090514-030732
2016-01-14
2024-04-29
Loading full text...

Full text loading...

/deliver/fulltext/med/67/1/annurev-med-090514-030732.html?itemId=/content/journals/10.1146/annurev-med-090514-030732&mimeType=html&fmt=ahah

Literature Cited

  1. Pollock PM, Meltzer PS. 1.  2002. A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2:5–7 [Google Scholar]
  2. Fedorenko IV, Paraiso KH, Smalley KS. 2.  2011. Acquired and intrinsic BRAF inhibitor resistance in BRAF V600E mutant melanoma. Biochem. Pharmacol. 82:201–9 [Google Scholar]
  3. Mitsiades N, Fagin JA. 3.  2010. Molecular genetics of thyroid cancer: pathogenetic significance and clinical applications. Genetic Diagnosis of Endocrine Disorders REW Refetoff 117–38 San Diego: Academic [Google Scholar]
  4. Kumar R, Angelini S, Czene K. 4.  et al. 2003. BRAF mutations in metastatic melanoma: a possible association with clinical outcome. Clin. Cancer Res. 9:3362–68 [Google Scholar]
  5. Wan PT, Garnett MJ, Roe SM. 5.  et al. 2004. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–67 [Google Scholar]
  6. Garnett MJ, Marais R. 6.  2004. Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6:313–19 [Google Scholar]
  7. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS. 7.  2008. BRAF(E600) in benign and malignant human tumours. Oncogene 27:877–95 [Google Scholar]
  8. Chong H, Lee J, Guan KL. 8.  2001. Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J. 20:3716–27 [Google Scholar]
  9. Davies H, Bignell GR, Cox C. 9.  et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  10. Tuveson DA, Weber BL, Herlyn M. 10.  2003. BRAF as a potential therapeutic target in melanoma and other malignancies. Cancer Cell 4:95–98 [Google Scholar]
  11. Mercer KE, Pritchard CA. 11.  2003. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim. Biophys. Acta 1653:25–40 [Google Scholar]
  12. Rajakulendran T, Sahmi M, Lefrancois M. 12.  et al. 2009. A dimerization-dependent mechanism drives RAF catalytic activation. Nature 461:542–45 [Google Scholar]
  13. Poulikakos PI, Zhang C, Bollag G. 13.  et al. 2010. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–30 [Google Scholar]
  14. Hatzivassiliou G, Song K, Yen I. 14.  et al. 2010. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464:431–35 [Google Scholar]
  15. Halaban R, Zhang W, Bacchiocchi A. 15.  et al. 2010. PLX4032, a selective BRAF(V600E) kinase inhibitor, activates the ERK pathway and enhances cell migration and proliferation of BRAF melanoma cells. Pigment Cell Melanoma Res. 23:190–200 [Google Scholar]
  16. Callahan MK, Rampal R, Harding JJ. 16.  et al. 2012. Progression of RAS-mutant leukemia during RAF inhibitor treatment. N. Engl. J. Med. 367:2316–21 [Google Scholar]
  17. Brose MS, Nutting CM, Jarzab B. 17.  et al. 2014. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet 384:319–28 [Google Scholar]
  18. Flaherty KT, Infante JR, Daud A. 18.  et al. 2012. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367:1694–703 [Google Scholar]
  19. Fagin JA, Mitsiades N. 19.  2008. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract. Res. Clin. Endocrinol. Metab. 22:955–69 [Google Scholar]
  20. Fukushima T, Suzuki S, Mashiko M. 20.  et al. 2003. BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22:6455–57 [Google Scholar]
  21. Kimura ET, Nikiforova MN, Zhu Z. 21.  et al. 2003. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 63:1454–57 [Google Scholar]
  22. Nikiforova MN, Kimura ET, Gandhi M. 22.  et al. 2003. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metab. 88:5399–404 [Google Scholar]
  23. Prahallad A, Sun C, Huang S. 23.  et al. 2012. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–3 [Google Scholar]
  24. Brose MS, Volpe P, Feldman M. 24.  et al. 2002. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res. 62:6997–7000 [Google Scholar]
  25. Naoki K, Chen TH, Richards WG. 25.  et al. 2002. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 62:7001–3 [Google Scholar]
  26. Palanisamy N, Ateeq B, Kalyana-Sundaram S. 26.  et al. 2010. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat. Med. 16:793–98 [Google Scholar]
  27. Arcaini L, Zibellini S, Boveri E. 27.  et al. 2012. The BRAF V600E mutation in hairy cell leukemia and other mature B-cell neoplasms. Blood 119:188–91 [Google Scholar]
  28. Blombery PA, Wong SQ, Hewitt CA. 28.  et al. 2012. Detection of BRAF mutations in patients with hairy cell leukemia and related lymphoproliferative disorders. Haematologica 97:780–83 [Google Scholar]
  29. Tiacci E, Trifonov V, Schiavoni G. 29.  et al. 2011. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364:2305–15 [Google Scholar]
  30. Badalian-Very G, Vergilio JA, Degar BA. 30.  et al. 2010. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 116:1919–23 [Google Scholar]
  31. Haroche J, Charlotte F, Arnaud L. 31.  et al. 2012. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 120:2700–3 [Google Scholar]
  32. Smith ML, Snaddon J, Neat M. 32.  et al. 2003. Mutation of BRAF is uncommon in AML FAB type M1 and M2. Leukemia 17:274–75 [Google Scholar]
  33. Christiansen DH, Andersen MK, Desta F, Pedersen-Bjergaard J. 33.  2005. Mutations of genes in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 19:2232–40 [Google Scholar]
  34. Lohr JG, Stojanov P, Lawrence MS. 34.  et al. 2012. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. PNAS 109:3879–84 [Google Scholar]
  35. Berghoff AS, Capper D, Preusser M. 35.  2013. Lack of BRAF V600E protein expression in primary central nervous system lymphoma. Appl. Immunohistochem. Mol. Morphol. 21:351–53 [Google Scholar]
  36. Chapman MA, Lawrence MS, Keats JJ. 36.  et al. 2011. Initial genome sequencing and analysis of multiple myeloma. Nature 471:467–72 [Google Scholar]
  37. Andrulis M, Lehners N, Capper D. 37.  et al. 2013. Targeting the BRAF V600E mutation in multiple myeloma. Cancer Discov. 3:862–69 [Google Scholar]
  38. Nazarian R, Shi H, Wang Q. 38.  et al. 2010. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–77 [Google Scholar]
  39. Bhatt KV, Spofford LS, Aram G. 39.  et al. 2005. Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 24:3459–71 [Google Scholar]
  40. Kono M, Dunn IS, Durda PJ. 40.  et al. 2006. Role of the mitogen-activated protein kinase signaling pathway in the regulation of human melanocytic antigen expression. Mol. Cancer Res. 4:779–92 [Google Scholar]
  41. Boni A, Cogdill AP, Dang P. 41.  et al. 2010. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 70:5213–19 [Google Scholar]
  42. Curtin JA, Fridlyand J, Kageshita T. 42.  et al. 2005. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353:2135–47 [Google Scholar]
  43. Landi MT, Bauer J, Pfeiffer RM. 43.  et al. 2006. MC1R germline variants confer risk for BRAF-mutant melanoma. Science 313:521–22 [Google Scholar]
  44. Cruz F 3rd, Rubin BP, Wilson D. 44.  et al. 2003. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 63:5761–66 [Google Scholar]
  45. Mitsiades N, Chew SA, He B. 45.  et al. 2011. Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Investig. Ophthalmol. Vis. Sci. 52:7248–55 [Google Scholar]
  46. Soares P, Trovisco V, Rocha AS. 46.  et al. 2003. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578–80 [Google Scholar]
  47. Mitsutake N, Knauf JA, Mitsutake S. 47.  et al. 2005. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res. 65:2465–73 [Google Scholar]
  48. Mesa C Jr, Mirza M, Mitsutake N. 48.  et al. 2006. Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res. 66:6521–29 [Google Scholar]
  49. Knauf JA, Ma X, Smith EP. 49.  et al. 2005. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res. 65:4238–45 [Google Scholar]
  50. Salvatore G, De Falco V, Salerno P. 50.  et al. 2006. BRAF is a therapeutic target in aggressive thyroid carcinoma. Clin. Cancer Res. 12:1623–29 [Google Scholar]
  51. Mitsiades CS, Negri J, McMullan C. 51.  et al. 2007. Targeting BRAFV600E in thyroid carcinoma: therapeutic implications. Mol. Cancer Ther. 6:1070–78 [Google Scholar]
  52. Ouyang B, Knauf JA, Smith EP. 52.  et al. 2006. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin. Cancer Res. 12:1785–93 [Google Scholar]
  53. Ciampi R, Zhu Z, Nikiforov YE. 53.  2005. BRAF copy number gains in thyroid tumors detected by fluorescence in situ hybridization. Endocr. Pathol. 16:99–105 [Google Scholar]
  54. Ciampi R, Knauf JA, Kerler R. 54.  et al. 2005. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J. Clin. Investig. 115:94–101 [Google Scholar]
  55. Hingorani SR, Jacobetz MA, Robertson GP. 55.  et al. 2003. Suppression of BRAF(V599E) in human melanoma abrogates transformation. Cancer Res. 63:5198–202 [Google Scholar]
  56. Calipel A, Lefevre G, Pouponnot C. 56.  et al. 2003. Mutation of B-Raf in human choroidal melanoma cells mediates cell proliferation and transformation through the MEK/ERK pathway. J. Biol. Chem. 278:42409–18 [Google Scholar]
  57. Sumimoto H, Miyagishi M, Miyoshi H. 57.  et al. 2004. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23:6031–39 [Google Scholar]
  58. Hoeflich KP, Gray DC, Eby MT. 58.  et al. 2006. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res. 66:999–1006 [Google Scholar]
  59. Tsai J, Lee JT, Wang W. 59.  et al. 2008. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. PNAS 105:3041–46 [Google Scholar]
  60. Bollag G, Hirth P, Tsai J. 60.  et al. 2010. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–99 [Google Scholar]
  61. Yang H, Higgins B, Kolinsky K. 61.  et al. 2010. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 70:5518–27 [Google Scholar]
  62. Joseph EW, Pratilas CA, Poulikakos PI. 62.  et al. 2010. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. PNAS 107:14903–8 [Google Scholar]
  63. Flaherty KT, Puzanov I, Kim KB. 63.  et al. 2010. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363:809–19 [Google Scholar]
  64. Chapman PB, Hauschild A, Robert C. 64.  et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364:2507–16 [Google Scholar]
  65. Sosman JA, Kim KB, Schuchter L. 65.  et al. 2012. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366:707–14 [Google Scholar]
  66. Rubinstein JC, Sznol M, Pavlick AC. 66.  et al. 2010. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J. Transl. Med. 8:67 [Google Scholar]
  67. Ponti G, Pellacani G, Tomasi A. 67.  et al. 2014. Molecular targeted approaches for advanced BRAF V600, N-RAS, c-KIT, and GNAQ melanomas. Dis. Markers 2014:671283 [Google Scholar]
  68. Dadu R, Shah K, Busaidy NL. 68.  et al. 2015. Efficacy and tolerability of vemurafenib in patients with BRAF(V600E)-positive papillary thyroid cancer: M.D. Anderson Cancer Center off label experience. J. Clin. Endocrinol. Metab. 100:E77–81 [Google Scholar]
  69. Kim KB, Cabanillas ME, Lazar AJ. 69.  et al. 2013. Clinical responses to vemurafenib in patients with metastatic papillary thyroid cancer harboring BRAF(V600E) mutation. Thyroid 23:1277–83 [Google Scholar]
  70. Cabanillas ME, Patel A, Danysh BP. 70.  et al. 2015. BRAF inhibitors: experience in thyroid cancer and general review of toxicity. Horm. Cancer 6:21–36 [Google Scholar]
  71. Montero-Conde C, Ruiz-Llorente S, Dominguez JM. 71.  et al. 2013. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 3:520–33 [Google Scholar]
  72. Stites EC. 72.  2012. The response of cancers to BRAF inhibition underscores the importance of cancer systems biology. Sci. Signal 5:pe46 [Google Scholar]
  73. Yaeger RD, Cercek A, O'Reilly EM. 73.  et al. 2015. Pilot study of vemurafenib and panitumumab combination therapy in patients with BRAF V600E mutated metastatic colorectal cancer. ASCO Meet. Abstr. 33:611 [Google Scholar]
  74. Hong DS, Morris VK, Fu S. 74.  et al. 2014. Phase 1B study of vemurafenib in combination with irinotecan and cetuximab in patients with BRAF-mutated advanced cancers and metastatic colorectal cancer. ASCO Meet. Abstr. 32:3516 [Google Scholar]
  75. Kopetz S, McDonough S, Morris VK. 75.  et al. 2015. S1406: Randomized phase II study of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (mCRC). ASCO Meet. Abstr. 33:TPS790 [Google Scholar]
  76. Falchook GS, Long GV, Kurzrock R. 76.  et al. 2012. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet 379:1893–901 [Google Scholar]
  77. Solit DB, Garraway LA, Pratilas CA. 77.  et al. 2006. BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–62 [Google Scholar]
  78. Kirkwood JM, Bastholt L, Robert C. 78.  et al. 2012. Phase II, open-label, randomized trial of the MEK1/2 inhibitor selumetinib as monotherapy versus temozolomide in patients with advanced melanoma. Clin. Cancer Res. 18:555–67 [Google Scholar]
  79. Bowyer SE, Rao AD, Lyle M. 79.  et al. 2014. Activity of trametinib in K601E and L597Q BRAF mutation-positive metastatic melanoma. Melanoma Res. 24:504–8 [Google Scholar]
  80. Catalanotti F, Solit DB, Pulitzer MP. 80.  et al. 2013. Phase II trial of MEK inhibitor selumetinib (AZD6244, ARRY-142886) in patients with BRAFV600E/K-mutated melanoma. Clin. Cancer Res. 19:2257–64 [Google Scholar]
  81. Kim KB, Kefford R, Pavlick AC. 81.  et al. 2013. Phase II study of the MEK1/MEK2 inhibitor trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J. Clin. Oncol. 31:482–89 [Google Scholar]
  82. Johnson DB, Flaherty KT, Weber JS. 82.  et al. 2014. Combined BRAF (dabrafenib) and MEK inhibition (trametinib) in patients with BRAFV600-mutant melanoma experiencing progression with single-agent BRAF inhibitor. J. Clin. Oncol. 32:3697–704 [Google Scholar]
  83. Shi H, Moriceau G, Kong X. 83.  et al. 2012. Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance. Nat. Commun. 3:724 [Google Scholar]
  84. Villanueva J, Infante JR, Krepler C. 84.  et al. 2013. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell Rep. 4:1090–99 [Google Scholar]
  85. Poulikakos PI, Persaud Y, Janakiraman M. 85.  et al. 2011. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–90 [Google Scholar]
  86. Johannessen CM, Boehm JS, Kim SY. 86.  et al. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–72 [Google Scholar]
  87. Wilson TR, Fridlyand J, Yan Y. 87.  et al. 2012. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487:505–9 [Google Scholar]
  88. Straussman R, Morikawa T, Shee K. 88.  et al. 2012. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–4 [Google Scholar]
  89. Sun C, Wang L, Huang S. 89.  et al. 2014. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature 508:118–22 [Google Scholar]
  90. Kim H, Frederick DT, Levesque MP. 90.  et al. 2015. Downregulation of the ubiquitin ligase RNF125 underlies resistance of melanoma cells to BRAF inhibitors via JAK1 deregulation. Cell Rep. 11:1458–73 [Google Scholar]
  91. Hirata E, Girotti MR, Viros A. 91.  et al. 2015. Intravital imaging reveals how BRAF inhibition generates drug-tolerant microenvironments with high integrin beta1/FAK signaling. Cancer Cell 27:574–88 [Google Scholar]
  92. Perna D, Karreth FA, Rust AG. 92.  et al. 2015. BRAF inhibitor resistance mediated by the AKT pathway in an oncogenic BRAF mouse melanoma model. PNAS 112:E536–45 [Google Scholar]
  93. Boussemart L, Malka-Mahieu H, Girault I. 93.  et al. 2014. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513:105–9 [Google Scholar]
  94. Haq R, Yokoyama S, Hawryluk EB. 94.  et al. 2013. BCL2A1 is a lineage-specific antiapoptotic melanoma oncogene that confers resistance to BRAF inhibition. PNAS 110:4321–26 [Google Scholar]
  95. Johannessen CM, Johnson LA, Piccioni F. 95.  et al. 2013. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504:138–42 [Google Scholar]
  96. Konieczkowski DJ, Johannessen CM, Abudayyeh O. 96.  et al. 2014. A melanoma cell state distinction influences sensitivity to MAPK pathway inhibitors. Cancer Discov. 4:816–27 [Google Scholar]
  97. Muller J, Krijgsman O, Tsoi J. 97.  et al. 2014. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat. Commun. 5:5712 [Google Scholar]
  98. Ji Z, Erin Chen Y, Kumar R. 98.  et al. 2015. MITF modulates therapeutic resistance through EGFR signaling. J. Investig. Dermatol. 135:1863–72 [Google Scholar]
  99. Das Thakur M, Salangsang F, Landman AS. 99.  et al. 2013. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494:251–55 [Google Scholar]
  100. Su F, Viros A, Milagre C. 100.  et al. 2012. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N. Engl. J. Med. 366:207–15 [Google Scholar]
/content/journals/10.1146/annurev-med-090514-030732
Loading
/content/journals/10.1146/annurev-med-090514-030732
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error