Skip to main content
Log in

Distinct Expression of the Calcium Exchangers, NCKX3 and NCX1, and Their Regulation by Steroid in the Human Endometrium During the Menstrual Cycle

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Plasma membrane sodium/calcium exchangers are an important component of intracellular calcium homeostasis and electrical conduction. The potassium-dependent sodium/calcium exchangers NCKX3 (gene SLC24A3) and NCX1 (gene SLC8A1) play a critical role in the transport of intracellular calcium across the cell membrane in exchange for extracellular sodium ions. NCKX3 and NCX1 transcripts are most abundant in the brain and smooth muscle, but many other tissues, particularly the uterus, aorta, and intestine, also express this gene at lower levels. However, the expression patterns and physiological roles of NCKX3 and NCX1 in the human endometrium during the menstrual cycle are unknown. Thus, we examined the endometrial expression of NCKX3 and NCX1 messenger RNA (mRNA) and protein throughout the different phases of the menstrual cycle. Endometrial expression of NCKX3 mRNA and protein was increased 1.5- to 2.5-fold during the early-proliferative, mid-proliferative, and early-secretory phases compared with the other phases; however, no significant alteration in NCX1 expression level was observed. The effects of the sex-steroid hormones, 17β-estradiol (E2) and progesterone (P4), on the expression of NCKX3 and NCX1 in Ishikawa cells was also investigated. NCKX3 expression was significantly increased by E2 (10−8 mol/L). However, the expression of NCX1 was not affected by E2 and P4. Subsequent immunohistochemical analysis revealed that the uterine NCKX3 and NCX1 proteins were abundantly localized in the cytoplasm of luminal and glandular epithelial cells throughout the menstrual cycle. Taken together, these results indicate that NCKX3 is abundantly expressed within the human endometrium at the transcriptional and translational levels, and its level appears to be regulated by a steroid hormone, in particular, E2 during the human menstrual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaustein MP, Lederer WJ. Sodium/calcium exchange: its physiological implications. Physiol Rev. 1999;79(3):763–854.

    Article  CAS  PubMed  Google Scholar 

  2. Yang H, Lee GS, Yoo YM, Choi KC, Jeung EB. Sodium/potassium/calcium exchanger 3 is regulated by the steroid hormones estrogen and progesterone in the uterus of mice during the estrous cycle. Biochem Biophys Res Commun. 2009;385(2):279–283.

    Article  CAS  PubMed  Google Scholar 

  3. Schwarz EM, Benzer S. Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1997;94(19):10249–10254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dong H, Jiang Y, Triggle CR, Li X, Lytton J. Novel role for K+-dependent Na+/Ca2+ exchangers in regulation of cytoplasmic free Ca2+ and contractility in arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2006;91(3):H1226–H1235.

    Article  CAS  Google Scholar 

  5. Kraev A, Quednau BD, Leach S, et al. Molecular cloning of a third member of the potassium-dependent sodium-calcium exchanger gene family, NCKX3. J Biol Chem. 2001;276(25):23161–23172.

    Article  CAS  PubMed  Google Scholar 

  6. Tsoi M, Rhee KH, Bungard D, Li XF, Lee SL, Auer RN, Lytton J. Molecular cloning of a novel potassium-dependent sodium-calcium exchanger from rat brain. J Biol Chem. 1998;273(7):4155–4162.

    Article  CAS  PubMed  Google Scholar 

  7. Lytton J, Li XF, Dong H, Kraev A. K+-dependent Na+/Ca2+ exchangers in the brain. Ann N Y Acad Sci. 2002;976:382–393.

    Article  CAS  PubMed  Google Scholar 

  8. Nicoll DA, Longoni S, Philipson KD. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990;250(4980):562–565.

    Article  CAS  PubMed  Google Scholar 

  9. Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem. 1996;271(40):24914–24921.

    Article  CAS  PubMed  Google Scholar 

  10. Cai X, Lytton J. Molecular cloning of a sixth member of the K+-dependent Na+/Ca2+ exchanger gene family, NCKX6. J Biol Chem. 2004;279(7):5867–5876.

    Article  CAS  PubMed  Google Scholar 

  11. Li XF, Kraev AS, Lytton J. Molecular cloning of a fourth member of the potassium-dependent sodium-calcium exchanger gene family, NCKX4. J Biol Chem. 2002;277(50):48410–48417.

    Article  CAS  PubMed  Google Scholar 

  12. Kim HJ, Lee GS, Ji YK, Choi KC, Jeung EB. Differential expression of uterine calcium transporter 1 and plasma membrane Ca2+ ATPase 1b during rat estrous cycle. Am J Physiol Endocrinol Metab. 2006;291(2):E234–241.

    Article  CAS  PubMed  Google Scholar 

  13. Krisinger J, Dann JL, Currie WD, Jeung EB, Leung PC. Calbindin-D9k mRNA is tightly regulated during the estrous cycle in the rat uterus. Mol Cell Endocrinol. 1992;86(1–2):119–123.

    CAS  PubMed  Google Scholar 

  14. Kimura J, Ono T, Sakamoto K, et al. Na+ -Ca2+ exchanger expression and its modulation. Biol Pharm Bull. 2009;32(3):325–331.

    Article  CAS  PubMed  Google Scholar 

  15. Carson DD, Bagchi I, Dey SK, et al. Embryo implantation. Dev Biol. 2000;223(2):217–237.

    Article  CAS  PubMed  Google Scholar 

  16. Schlafke S, Enders AC. Cellular basis of interaction between trophoblast and uterus at implantation. Biol Reprod. 1975;12(1):41–65.

    Article  CAS  PubMed  Google Scholar 

  17. Yoshinaga K. Uterine receptivity for blastocyst implantation. Ann N Y Acad Sci. 1988;541:424–431.

    Article  CAS  PubMed  Google Scholar 

  18. Psychoyos A. Hormonal control of uterine receptivity for nidation. J Reprod Fertil. 1976;1(25):17–28.

    Google Scholar 

  19. Psychoyos A. Uterine receptivity for nidation. Ann N Y Acad Sci. 1986;476(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  20. Sharkey A. Cytokines and implantation. Rev Reprod. 1998;3(1):52–61.

    Article  CAS  PubMed  Google Scholar 

  21. Daston GP, Naciff JM. Gene expression changes related to growth and differentiation in the fetal and juvenile reproductive system of the female rat: evaluation of microarray results. Reprod Toxicol. 2005;19(3):381–394.

    Article  CAS  PubMed  Google Scholar 

  22. Salamonsen LA, Nie G, Dimitriadis E, Robb L, Findlay JK. Genes involved in implantation. Reprod Fertil Dev. 2001;13(1):41–49.

    Article  CAS  PubMed  Google Scholar 

  23. Lee GS, Jeung EB. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model. Am J Physiol Endocrinol Metab. 2007;293(1):E132–138.

    Article  CAS  PubMed  Google Scholar 

  24. Luu KC, Nie GY, Hampton A, Fu GQ, Liu YX, Salamonsen LA. Endometrial expression of calbindin (CaBP)-d28k but not CaBP-d9k in primates implies evolutionary changes and functional redundancy of calbindins at implantation. Reproduction. 2004a;128(4):433–441.

    Article  CAS  PubMed  Google Scholar 

  25. Luu KC, Nie GY, Salamonsen LA. Endometrial calbindins are critical for embryo implantation: evidence from in vivo use of morpholino antisense oligonucleotides. Proc Natl Acad Sci U S A. 2004b;101(21):8028–8033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong EJ, Choi KC, Jeung EB. Induction of calbindin-D9k messenger RNA and protein by maternal exposure to alkylphenols during late pregnancy in maternal and neonatal uteri of rats. Biol Reprod. 2004;71(2):669–675.

    Article  CAS  PubMed  Google Scholar 

  27. Opperman LA, Saunders TJ, Bruns DE, Boyd JC, Mills SE, Bruns ME. Estrogen inhibits calbindin-D28k expression in mouse uterus. Endocrinology. 1992;130(3):1728–1735.

    CAS  PubMed  Google Scholar 

  28. Aneiros E, Philipp S, Lis A, Freichel M, Cavalie A. Modulation of Ca2+ signaling by Na+/Ca2+ exchangers in mast cells. J Immunol. 2005;174(1):119–130.

    Article  CAS  PubMed  Google Scholar 

  29. Kiedrowski L. High activity of K+-dependent plasmalemmal Na+/Ca2+ exchangers in hippocampal CA1 neurons. Neuroreport. 2004;15(13):2113–2116.

    Article  CAS  PubMed  Google Scholar 

  30. Kiedrowski L, Czyz A, Baranauskas G, Li XF, Lytton J. Differential contribution of plasmalemmal Na/Ca exchange isoforms to sodium-dependent calcium influx and NMDA excitotoxicity in depolarized neurons. J Neurochem. 2004;90(1):117–128.

    Article  CAS  PubMed  Google Scholar 

  31. Kim MH, Korogod N, Schneggenburger R, Ho WK, Lee SH. Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J Neurosci. 2005;25(26):6057–6065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kip SN, Gray NW, Burette A, Canbay A, Weinberg RJ, Strehler EE. Changes in the expression of plasma membrane calcium extrusion systems during the maturation of hippocampal neurons. Hippocampus. 2006;16(1):20–34.

    Article  CAS  PubMed  Google Scholar 

  33. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am J Obstet Gynecol. 1975;122(2):262–263.

    Article  CAS  PubMed  Google Scholar 

  34. Tatsumi K, Higuchi T, Fujiwara H, et al. Expression of calcium binding protein D-9k messenger RNA in the mouse uterine endometrium during implantation. Mol Hum Reprod. 1999;5(2):153–161.

    Article  CAS  PubMed  Google Scholar 

  35. Simmen RC, Simmen FA. Progesterone receptors and Sp/Kruppel-like family members in the uterine endometrium. Front Biosci. 2002;7(1):d1556–d1565.

    CAS  PubMed  Google Scholar 

  36. Marions L, Danielsson KG. Expression of cyclo-oxygenase in human endometrium during the implantation period. Mol Hum Reprod. 1999;5(10):961–965.

    Article  CAS  PubMed  Google Scholar 

  37. Surveyor GA, Wilson AK, Brigstock DR. Localization of connective tissue growth factor during the period of embryo implantation in the mouse. Biol Reprod. 1998;59(5):1207–1213.

    Article  CAS  PubMed  Google Scholar 

  38. Choudhary S, Kumar A, Kale RK, Raisz LG, Pilbeam CC. Extracellular calcium induces COX-2 in osteoblasts via a PKA pathway. Biochem Biophys Res Commun. 2004;322(2):395–402.

    Article  CAS  PubMed  Google Scholar 

  39. Geisert RD, Renegar RH, Thatcher WW, Roberts RM, Bazer FW. Establishment of pregnancy in the pig: I. Interrelationships between preimplantation development of the pig blastocyst and uterine endometrial secretions. Biol Reprod. 1982;27(4):925–939.

    Article  CAS  PubMed  Google Scholar 

  40. Schnetkamp PP. Calcium homeostasis in vertebrate retinal rod outer segments. Cell Calcium. 1995;18(4):322–330.

    Article  CAS  PubMed  Google Scholar 

  41. Brunette MG, Leclerc M. Effect of estrogen on calcium and sodium transport by the nephron luminal membranes. J Endocrinol. 2001;170(2):441–450.

    Article  CAS  PubMed  Google Scholar 

  42. Brunton VG, MacPherson IR, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta. 2004;1692(2–3):121–144.

    Article  CAS  PubMed  Google Scholar 

  43. Kim EJ, Helfman DM. Characterization of the metastasis-associated protein, S100A4. Roles of calcium binding and dimerization in cellular localization and interaction with myosin. J Biol Chem. 2003;278(32):30063–30073.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Bae Jeung DVM, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Kim, TH., Lee, HH. et al. Distinct Expression of the Calcium Exchangers, NCKX3 and NCX1, and Their Regulation by Steroid in the Human Endometrium During the Menstrual Cycle. Reprod. Sci. 18, 577–585 (2011). https://doi.org/10.1177/1933719110396229

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719110396229

Keywords

Navigation