Skip to main content

Advertisement

Log in

Effects of Supraphysiologic Levels of Estradiol on Endometrial Decidualization, sFlt1, and HOXA10 Expression

  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective: Supraphysiologic estradiol (E2) levels associated with controlled ovarian hyperstimulation in high in vitro fertilization (IVF) responders may alter implantation and placentation and increase the risk of preeclampsia. Our hypothesis is that elevated E2 levels in vitro significantly alter endometrial decidualization, sFlt1, and HOXA10 expression. Methods: Human endometrial stromal cells were treated with a decidualization cocktail of medroxyprogesterone, cyclic adenosine monophosphate, and 3 concentrations of E2 10 nM (standard), 100 nM (intermediate), or 1000 nM E2 (high). Effects on sFlt1, prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP-1), vascular endothelial growth factor (VEGF), and HOXA10 were studied. Results: Prolactin, IGFBP-1, and VEGF significantly increased at all 3 E2 concentrations. While IGFBP-1 and VEGF did not change with increasing E2, PRL was less with high E2 (6.0 ng/mL + 1.4 standard error of the mean) compared to standard (21.4 + 3.2) and intermediate (19.8 + 3.8). sFlt1 decrease was similar at all E2 concentrations. HOXA10 was lower at standard (10%) and intermediate (30%) as expected, but did not change with high E2. Conclusions: Supraphysiologic E2 levels associated with high IVF responders that exceed in vivo levels may impair in vitro endometrial decidualization. Although PRL did increase with high E2, the levels were, however, attenuated and 3.4-fold lower than standard and intermediate E2. sFlt1 was decreased under all 3 conditions with no differences between concentrations. Reduced HOXA10 was not observed with high E2. These findings suggest that elevated E2 levels in vitro may alter endometrial decidualization and subsequently affect implantation and placentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farhi J, Ben-Haroush A, Andrawus N, et al. High serum oestradiol concentrations in IVF cycles increase the risk of pregnancy complications related to abnormal placentation. Reprod Biomed Online. 2010;21(3):331–337.

    Article  CAS  Google Scholar 

  2. Imudia AN, Awonuga AO, Doyle JO, et al. Peak serum estradiol level during controlled ovarian hyperstimulation is associated with increased risk of small for gestational age and preeclampsia in singleton pregnancies after in vitro fertilization. Fertil Steril. 2012;97(6):1374–1379.

    Article  CAS  Google Scholar 

  3. Kalra SK, Ratcliffe SJ, Coutifaris C, Molinaro T, Barnhart KT. Ovarian stimulation and low birth weight in newborns conceived through in vitro fertilization. Obstet Gynecol. 2011;118(4):863–871.

    Article  Google Scholar 

  4. Martin AS, Monsour M, Kawwass JF, Boulet SL, Kissin DM, Jamieson DJ. Risk of preeclampsia in pregnancies after assisted reproductive technology and ovarian stimulation. Matern Child Health J. 2016;20(10):2050–2056.

    Article  Google Scholar 

  5. Berkane N, Liere P, Oudinet JP, et al. From pregnancy to preeclampsia: a key role for estrogens. Endocr Rev. 2017;38(2):123–144.

    Article  Google Scholar 

  6. Fisher SJ. Why is placentation abnormal in preeclampsia? Am J Obstet Gynecol. 2015;213(4 suppl):S115–S122.

    Article  Google Scholar 

  7. Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension. 2013;62(6):1046–1054.

    Article  CAS  Google Scholar 

  8. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, van Asshe A. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol. 1994;101(8):669–674.

    Article  CAS  Google Scholar 

  9. Naicker T, Khedun SM, Moodley J, Pijnenborg R. Quantitative analysis of trophoblast invasion in preeclampsia. Acta Obstet Gynecol Scand. 2003;82(8):722–729.

    Article  Google Scholar 

  10. Schatz F, Guzeloglu-Kayisli O, Arlier S, Kayisli UA, Lockwood CJ. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. Hum Reprod Update. 2016;22(4):497–515.

    Article  CAS  Google Scholar 

  11. Albrecht ED, Bonagura TW, Burleigh DW, Enders AC, Aberdeen GW, Pepe GJ. Suppression of extravillous trophoblast invasion of uterine spiral arteries by estrogen during early baboon pregnancy. Placenta. 2006;27(4–5):483–490.

    Article  CAS  Google Scholar 

  12. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–658.

    Article  CAS  Google Scholar 

  13. Fan X, Rai A, Kambham N, et al. Endometrial VEGF induces placental sFlt1 and leads to pregnancy complications. J Clin Invest. 2014;124(11):4941–4952.

    Article  CAS  Google Scholar 

  14. Bonagura TW, Pepe GJ, Enders AC, Albrecht ED. Suppression of extravillous trophoblast vascular endothelial growth factor expression and uterine spiral artery invasion by estrogen during early baboon pregnancy. Endocrinology. 2008;149(10):5078–5087.

    Article  CAS  Google Scholar 

  15. Cottrell HN, Wu J, Rimawi BH, et al. Human endometrial stromal cell plasticity: reversible sFlt1 expression negatively coincides with decidualization. Hypertens Pregnancy. 2017;36(2):204–211.

    Article  CAS  Google Scholar 

  16. Lim H, Ma L, Ma WG, Maas RL, Dey SK. HOXA-10 regulates uterine stromal cell responsiveness to progesterone during implantation and decidualization in the mouse. Mol Endocrinol. 1999;13(6):1005–1017.

    Article  CAS  Google Scholar 

  17. Du H, Taylor HS. The role of hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb PerspectMed. 2015;6(1):a023002.

    Article  Google Scholar 

  18. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101(7):1379–1384.

    Article  CAS  Google Scholar 

  19. Qian K, Chen H, Wei Y, Hu J, Zhu G. Differentiation of endometrial stromal cells in vitro: down-regulation of suppression of the cell cycle inhibitor p57 by HOXA10? Mol Hum Reprod. 2005;11(4):245–251.

    Article  CAS  Google Scholar 

  20. Kulp JL, Mamillapalli R, Taylor HS. Aberrant HOXA10 methylation in patients with common gynecologic disorders: implications for reproductive outcomes. Reprod Sci. 2016;23(4):455–463.

    Article  CAS  Google Scholar 

  21. Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in HOXA10-deficient mice. Nature. 1995;374(6521):460–463.

    Article  CAS  Google Scholar 

  22. Bagot CN, Kliman HJ, Taylor HS. Maternal HOXA10 is required for pinopod formation in the development ofmouse uterine receptivity to embryo implantation. Dev Dyn. 2001;222(3):538–544.

    Article  CAS  Google Scholar 

  23. Taylor HS, Daftary GS, Selam B. Endometrial HOXA10 expression after controlled ovarian hyperstimulation with recombinant follicle-stimulating hormone. Fertil Steril. 2003;80(suppl 2): 839–843.

    Article  Google Scholar 

  24. Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–649.

    CAS  PubMed  Google Scholar 

  25. Sawatsri S, Desai N, Rock JA, Sidell N. Retinoic acid suppresses interleukin-6 production in human endometrial cells. Fertil Steril. 2000;73(5):1012–1019.

    Article  CAS  Google Scholar 

  26. Yu J, Berga SL, Johnston-MacAnanny EB, et al. Endometrial stromal decidualization responds reversibly to hormone stimulation and withdrawal. Endocrinology. 2016;157(6):2432–2446.

    Article  CAS  Google Scholar 

  27. Krikun G, Mor G, Alvero A, et al. A novel immortalized human endometrial stromal cell line with normal progestational response. Endocrinology. 2004;145(5):2291–2296.

    Article  CAS  Google Scholar 

  28. Cortes-Gallegos V, Gallegos AJ, Basurto CS, Rivadeneyra J. Estrogen peripheral levels vs estrogen tissue concentration in the human female reproductive tract. J Steroid Biochem. 1975;6(1):15–20.

    Article  CAS  Google Scholar 

  29. Schutte SC, Taylor RN. A tissue-engineered human endometrial stroma that responds to cues for secretory differentiation, decidualization, and menstruation. Fertil Steril. 2012;97(4):997–1003.

    Article  CAS  Google Scholar 

  30. Yu J, Wu J, Bagchi IC, Bagchi MK, Sidell N, Taylor RN. Disruption of gap junctions reduces biomarkers of decidualization and angiogenesis and increases inflammatory mediators in human endometrial stromal cell cultures. Mol Cell Endocrinol. 2011; 344(1–2):25–34.

    Article  CAS  Google Scholar 

  31. Luciano AA, Varner MW. Decidual, amniotic fluid, maternal and fetal prolactin in normal and abnormal pregnancies. Obstet Gynecol. 1984;63(3):384–388.

    CAS  PubMed  Google Scholar 

  32. Yuen BH, Cannon W, Woolley S, Charles E. Maternal plasma and amniotic fluid prolactin levels in normal and hypertensive pregnancy. Br J Obstet Gynaecol. 1978;85(4):293–298.

    Article  CAS  Google Scholar 

  33. Golander A, Kopel R, Lazebnik N, Frenkel Y, Spirer Z. Decreased prolactin secretion by decidual tissue of preeclampsia in vitro. Acta Endocrinol (Copenh). 1985;108(1):111–113.

    Article  CAS  Google Scholar 

  34. Godbole G, Suman P, Malik A, et al. Decrease in expression of HOXA10 in the decidua after embryo implantation promotes trophoblast invasion. Endocrinology. 2017;158(8):2618–2633.

    Article  CAS  Google Scholar 

  35. Lee MS, Cantonwine D, Little SE, et al. Angiogenic markers in pregnancies conceived through in vitro fertilization. Am JObstet Gynecol. 2015;213(2):212 e211–218.

    Google Scholar 

  36. Sahu MB, Deepak V, Gonzales SK, Rimawi B, Watkins KK, Smith AK, et al. Decidual cells from women with preeclampsia exhibit inadequate decidualization and reduced sFlt1 suppression. Pregnancy Hypertens. 2019;15:64–71.

    Article  Google Scholar 

  37. Imudia AN, Awonuga AO, Kaimal AJ, Wright DL, Styer AK, Toth TL. Elective cryopreservation of all embryos with subsequent cryothaw embryo transfer in patients at risk for ovarian hyperstimulation syndrome reduces the risk of adverse obstetric outcomes: a preliminary study. Fertil Steril. 2013;99(1):168–173.

    Article  Google Scholar 

Download references

Acknowledgments

The author(s) also thank Hongyan Qu for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine Rajakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cottrell, H.N., Deepak, V., Spencer, J.B. et al. Effects of Supraphysiologic Levels of Estradiol on Endometrial Decidualization, sFlt1, and HOXA10 Expression. Reprod. Sci. 26, 1626–1632 (2019). https://doi.org/10.1177/1933719119833485

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719119833485

Keywords

Navigation