Skip to main content
Log in

Pediatric Age Groups and Approach to Studies

  • Special Section: Pediatric Therapeutic Development: Commentary
  • Published:
Therapeutic Innovation & Regulatory Science Aims and scope Submit manuscript

Abstract

Pediatric clinical trials are often requested according to specific age ranges. In the past and still today, these ages may correspond to developmental stages, such as newborn, infancy, childhood, and adolescence. Selection of ages for pediatric participation in medication studies should correspond to ages of rapid changes in pharmacokinetics and pharmacodynamics. Age-related changes in several enzymes involved in drug metabolism and glomerular filtration are described as examples of optimal ages for study of specific drugs according to their pathways of disposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Williams K, Thomson D, Seto I, et al. Standard 6: age groups for pediatric trials. Pediatrics. 2012;129(suppl 3):S153–S160.

    Article  Google Scholar 

  2. Center for Drug Evaluation and Research, Center for Biologics Evaluation and Research, FDA. Guidance for industry, E11 Clinical investigation of medicinal products in the pediatric population. https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM073143.pdf. Published December 2000. Accessed November 10, 2018.

  3. Center for Drug Evaluation and Research, FDA. General clinical pharmacology considerations for pediatric studies for drugs and biological products, guidance for industry. https://www.fda.gov/downloads/drugs/guidances/ucm425885.pdf. Published December 2014. Accessed November 13, 2018.

  4. International Congress on Harmonization. ICH harmonised guideline addendum to ICH E11: Clinical investigation of medicinal products in the pediatric population E11 (R1). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E11/ICH_E11_R1_Step_2_25Aug2016_Final.pdf. Published 2017. Accessed November 10, 2018.

  5. Contopoulos-Ioannidis DG, Seto I, Hamm MP, et al. Empirical evaluation of age groups and age-subgroup analyses in pediatric randomized trials and pediatric meta-analyses. Pediatrics. 2012; 129(suppl 3):S161–S184.

    Article  Google Scholar 

  6. Hamm MP, Hartling L, Milne A, et al. A descriptive analysis of a representative sample of pediatric randomized controlled trials published in 2007. BMC Pediatr. 2010;10:96.

    Article  Google Scholar 

  7. Ward RM, Sherwin CM. Ethics of drug studies in the newborn. Paediatr Drugs. 2015;17(1):37–42.

    Article  Google Scholar 

  8. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–1167.

    Article  CAS  Google Scholar 

  9. Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2): 250–267.

    Article  CAS  Google Scholar 

  10. Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm. 2013;452(1–2):3–7.

    Article  CAS  Google Scholar 

  11. Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–974.

    Article  CAS  Google Scholar 

  12. Stevens JC, Hines RN, Gu C, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–582.

    Article  CAS  Google Scholar 

  13. Yang F, Tong X, McCarver DG, Hines RN, Beard DA. Population-based analysis of methadone distribution and metabolism using an age-dependent physiologically based pharmacokinetic model. J Pharmacokinet Pharmacodyn. 2006;33(4): 485–518.

    Article  CAS  Google Scholar 

  14. Blake MJ, Castro L, Leeder JS, Kearns GL. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med. 2005;10(2):123–138.

    Article  Google Scholar 

  15. Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O- and N-demethylation in the first year of life. Clin Pharmacol Ther. 2007;81(4):510–516.

    Article  CAS  Google Scholar 

  16. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.

    Article  Google Scholar 

  17. de Wildt SN, Kearns GL, Leeder JS, van den Anker JN. Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet. 1999;36(6):439–452.

    Article  Google Scholar 

  18. Leeder JS. Developmental pharmacogenetics: a general paradigm for application to neonatal pharmacology and toxicology. Clin Pharmacol Ther. 2009;86(6):678–682.

    Article  CAS  Google Scholar 

  19. Leeder JS, Kearns GL, Spielberg SP, van den Anker J. Understanding the relative roles of pharmacogenetics and ontogeny in pediatric drug development and regulatory science. J Clin Pharmacol. 2010;50(12):1377–1387.

    Article  Google Scholar 

  20. Madadi P, Ciszkowski C, Gaedigk A, et al. Genetic transmission of cytochrome P450 2D6 (CYP2D6) ultrarapid metabolism: implications for breastfeeding women taking codeine. Curr Drug Saf. 2011;6(1):36–39.

    Article  CAS  Google Scholar 

  21. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver—evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247(2):625–634.

    Article  CAS  Google Scholar 

  22. Croom EL, Stevens JC, Hines RN, Wallace AD, Hodgson E. Human hepatic CYP2B6 developmental expression: the impact of age and genotype. Biochem Pharmacol. 2009;78(2):184–190.

    Article  CAS  Google Scholar 

  23. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–956.

    Article  CAS  Google Scholar 

  24. Stevens JC, Marsh SA, Zaya MJ, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos. 2008; 36(8):1587–1593.

    Article  CAS  Google Scholar 

  25. Calvier EA, Krekels EH, Valitalo PA, et al. Allometric scaling of clearance in paediatric patients: when does the magic of 0.75 fade? Clin Pharmacokinet. 56(3):273–285.

  26. Ward RM, Benjamin D Jr, Barrett JS, et al. Safety, dosing, and pharmaceutical quality for studies that evaluate medicinal products (including biological products) in neonates. Ped Res. 2017; 81:692–711.

    Article  Google Scholar 

  27. Samardzic J, Allegaert K, Bajcetic M. Developmental pharmacology: A moving target. Int J Pharm. 2015;492(1–2):335–337.

    Article  CAS  Google Scholar 

  28. Polin RA, Abman SH, Rowitch DH, Benitz WE, Fox WW, eds. Fetal and Neonatal Physiology. 5th ed. Philadelphia, PA: Elsevier; 2017.

    Google Scholar 

  29. Lu H, Rosenbaum S. Developmental pharmacokinetics in pediatric populations. J Pediatr Pharmacol Ther. 2014;19(4): 262–276.

    PubMed  PubMed Central  Google Scholar 

  30. Treluyer JM, Gueret G, Cheron G, Sonnier M, Cresteil T. Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics. 1997;7(6):441–452.

    Article  CAS  Google Scholar 

  31. Hirt D, Van Overmeire B, Treluyer JM, et al. An optimized ibuprofen dosing scheme for preterm neonates with patent ductus arteriosus, based on a population pharmacokinetic and pharmaco-dynamic study. Br J Clin Pharmacol. 2008;65(5):629–636.

    Article  CAS  Google Scholar 

  32. Yaffe SJ, Friedman WF, Rogers D, Lang P, Ragni M, Saccar C. The disposition of indomethacin in preterm babies. J Pediatr. 1980;97(6):1001–1006.

    Article  CAS  Google Scholar 

  33. Wiest DB, Pinson JB, Gal PS, et al. Population pharmacokinetics of intravenous indomethacin in neonates with symptomatic patent ductus arteriosus. Clin Pharmacol Ther. 1991;49(5):550–557.

    Article  CAS  Google Scholar 

  34. Brash AR, Hickey DE, Graham TP, Stahlman MT, Oates JA, Cotton RB. Pharmacokinetics of indomethacin in the neonate. Relation of plasma indomethacin levels to response of the ductus arteriosus. N Engl J Med. 1981;305(2):67–72.

    Article  CAS  Google Scholar 

  35. Wilbaux M, Fuchs A, Samardzic J, et al. Pharmacometric approaches to personalize use of primarily renally eliminated antibiotics in preterm and term neonates. J Clin Pharmacol. 2016;56(8):909–935.

    Article  CAS  Google Scholar 

  36. Rodieux F, Wilbaux M, van den Anker JN, Pfister M. Effect of kidney function on drug kinetics and dosing in neonates, infants, and children. Clin Pharmacokinet. 2015;54(12):1183–1204.

    Article  CAS  Google Scholar 

  37. Smits A, Annaert P, Allegaert K. Drug disposition and clinical practice in neonates: cross talk between developmental physiology and pharmacology. Int J Pharm. 2013;452(1–2):8–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Job PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Job, K.M., Gamalo, M. & Ward, R.M. Pediatric Age Groups and Approach to Studies. Ther Innov Regul Sci 53, 584–589 (2019). https://doi.org/10.1177/2168479019856572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/2168479019856572

Keywords

Navigation