Skip to main content

Advertisement

Log in

Ginsenosides May Enhance the Functionality of Human Embryonic Stem Cell–Derived Cardiomyocytes In Vitro

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Various chemicals have been reported to induce the differentiation of human embryonic stem cells (hESCs) into cardiomyocytes (CMs), however, their contributions to the functionality of hESC-derived CMs are still limited. In this study, we evaluated the effects of red ginseng extract (RGE), ginsenoside-Rb1 (gRb1, panaxadiol), and ginsenoside-Re (gRe, panaxatriol) on the differentiation of hESCs and the functionality of derived CMs. Undifferentiated hESCs were treated with 0.25 mg/mL RGE, 10 μmol/L gRb1, or 10 μmol/L gRe for 48 hours at the differentiation induction (early stage) or maturation (late stage) period. The expression of mesodermal and cardiac transcription factor genes was upregulated in the ginsenoside-treated groups from early stage. The expression of cardiac sarcomeric genes was significantly upregulated at the late stage. The gRb1- and gRe-treated groups upregulated the expression of potassium voltage-gated channel subfamily E member 1 (KCNE1) and the gRe-treated group showed a longer beating duration compared to the control. Taken together, ginsenosides may enhance the functionality of hESC-derived CMs in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kehat I, Kenyagin-Karsenti D, Snir M, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407–414.

    Article  CAS  Google Scholar 

  2. Oh SK, Kim HS, Ahn HJ, et al. Derivation and characterization of new human embryonic stem cell lines: SNUhES1, SNUhES2, and SNUhES3. Stem Cells. 2005;23(2):211–219.

    Article  Google Scholar 

  3. Filipczyk AA, Passier R, Rochat A, Mummery CL. Regulation of cardiomyocyte differentiation of embryonic stem cells by extracellular signalling. Cell Mol Life Sci. 2007;64(6):704–718.

    Article  CAS  Google Scholar 

  4. Harvey RP. Patterning the vertebrate heart. Nat Rev Genet. 2002;3(7):544–556.

    Article  CAS  Google Scholar 

  5. Ladd AN, Yatskievych TA, Antin PB. Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev Biol. 1998;204(2):407–419.

    Article  CAS  Google Scholar 

  6. Laflamme MA, Chen KY, Naumova AV, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007;25(9):1015–1024.

    Article  CAS  Google Scholar 

  7. He JQ, Ma Y, Lee Y, Thomson JA, Kamp TJ. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ Res. 2003;93(1):32–39.

    Article  CAS  Google Scholar 

  8. Passier R, Denning C, Mummery C. Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol. 2006;(174):101–122.

  9. Jang J, Ku SY, Kim JE, et al. Notch inhibition promotes human embryonic stem cell-derived cardiac mesoderm differentiation. Stem Cells. 2008;26(11):2782–2790.

    Article  CAS  Google Scholar 

  10. Jung CH, Seog HM, Choi IW, Choi HD, Cho HY. Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol. 2005;98(3):245–250.

    Article  Google Scholar 

  11. Kim YY, Ku SY, Jang J, et al. Use of long-term cultured embryoid bodies may enhance cardiomyocyte differentiation by BMP2. Yonsei Med J. 2008;49(5):819–827.

    Article  CAS  Google Scholar 

  12. Pekkanen-Mattila M, Kerkela E, Tanskanen JM, et al. Substantial variation in the cardiac differentiation of human embryonic stem cell lines derived and propagated under the same conditions–a comparison of multiple cell lines. Ann Med. 2009;41(5):360–370.

    Article  CAS  Google Scholar 

  13. Helms S. Cancer prevention and therapeutics: panax ginseng. Altern Med Rev. 2004;9(3):259–274.

    PubMed  Google Scholar 

  14. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 1999;58(11):1685–1693.

    Article  CAS  Google Scholar 

  15. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol. 1997;54(1):1–8.

    Article  CAS  Google Scholar 

  16. Toh HT. Improved isolated heart contractility and mitochondrial oxidation after chronic treatment with Panax ginseng in rats. Am J Chin Med. 1994;22(3–4):275–284.

    Article  CAS  Google Scholar 

  17. Chu GX, Chen X. Anti-lipid peroxidation and protection of ginsenosides against cerebral ischemia-reperfusion injuries in rats. Zhongguo Yao Li Xue Bao. 1990;11(2):119–123.

    CAS  PubMed  Google Scholar 

  18. Kim YY, Ku SY, Rosenwaks Z, et al. Red ginseng extract facilitates the early differentiation odf human embryonic stem cells into mesendoderm lineage. Evid Based Complement Alternat Med. 2011;2011. pii: 167376.

  19. Oh SK, Kim HS, Park YB, et al. Methods for expansion of human embryonic stem cells. Stem Cells. 2005;23(9):605–609.

    Article  CAS  Google Scholar 

  20. Kim YY, Ku SY, Liu HC, et al. Cryopreservation of human embryonic stem cells derived-cardiomyocytes induced by BMP2 in serum-free condition. Reprod Sci. 2011;18(3):252–260.

    Article  CAS  Google Scholar 

  21. Kim YY, Ku SY, Huh Y, et al. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes. Age (Dordr). 2013;35(5):1545–1557.

    Article  CAS  Google Scholar 

  22. Furukawa T, Bai CX, Kaihara A, et al. Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol Pharmacol. 2006;70(6):1916–1924.

    Article  CAS  Google Scholar 

  23. Wang YG, Zima AV, Ji X, Pabbidi R, Blatter LA, Lipsius SL. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am J Physiol Heart Circ Physiol. 2008;295(2):H851–H859.

    Article  CAS  Google Scholar 

  24. Scott GI, Colligan PB, Ren BH, Ren J. Ginsenosides Rb1 and Re decrease cardiac contraction in adult rat ventricular myocytes: role of nitric oxide. Br J Pharmacol. 2001;134(6):1159–1165.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Yup Ku.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.Y., Ku, J.B., Liu, H.C. et al. Ginsenosides May Enhance the Functionality of Human Embryonic Stem Cell–Derived Cardiomyocytes In Vitro. Reprod. Sci. 21, 1312–1318 (2014). https://doi.org/10.1177/1933719114525269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114525269

Keywords

Navigation