Skip to main content

Advertisement

Log in

Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This study was undertaken to investigate stem cells in adult mouse ovary, the effect of chemotherapy on them and their potential to differentiate into germ cells. Very small embryonic-like stem cells (VSELs) that were SCA-1+/Lin−/CD45−, positive for nuclear octamer-binding transforming factor 4 (OCT-4), Nanog, and cell surface stage-specific embryonic antigen 1, were identified in adult mouse ovary. Chemotherapy resulted in complete loss of follicular reserve and cytoplasmic OCT-4 positive progenitors (ovarian germ stem cells) but VSELs survived. In ovarian surface epithelial (OSE) cell cultures from chemoablated ovary, proliferating germ cell clusters and mouse vasa homolog/growth differentiation factor 9-positive oocyte-like structure were observed by day 6, probably arising as a result of differentiation of the surviving VSELs. Follicle-stimulating hormone (FSH) exerted a direct stimulatory action on the OSE and induced stem cells proliferation and differentiation into premeiotic germ cell clusters during intact chemoablated ovaries culture. The FSH analog pregnant mare serum gonadotropin treatment to chemoablated mice increased the percentage of surviving VSELs in ovary. The results of this study provide evidence for the presence of potential VSELs in mouse ovaries and show that they survive chemotherapy, are modulated by FSH, and retain the ability to undergo oocyte-specific differentiation. These results show relevance to women who undergo premature ovarian failure because of oncotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson J, Canning J, Kaneko T, Pru JK, Tilly JL. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature. 2004;428(6979):145–150.

    CAS  PubMed  Google Scholar 

  2. Parte S, Bhartiya D, Telang J, et al. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Dev. 2011;20(8):1451–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pacchiarotti J, Maki C, Ramos T, et al. Differentiation potential of germ line stem cells derived from the postnatal mouse ovary. Differentiation. 2010;79(3):159–170.

    CAS  PubMed  Google Scholar 

  4. Zou K, Yuan Z, Yang Z, et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol. 2009;11(5):631–636.

    CAS  PubMed  Google Scholar 

  5. Zhang D, Fouad H, Zoma WD, Salama SA, Wentz MJ, Al-Hendy A. Expression of stem and germ cell markers within nonfollicle structures in adult mouse ovary. Reprod Sci. 2008; 15(2): 139–146.

    PubMed  Google Scholar 

  6. Virant-Klun I, Zech N, Rozman P, et al. Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation. 2008;76(8):843–856.

    CAS  PubMed  Google Scholar 

  7. Bukovsky A, Caudle MR, Svetlikova M, Upadhyaya NB. Origin of germ cells and formation of new primary follicles in adult human ovaries. Reprod Biol Endocrinol. 2004;2:20.

    PubMed  PubMed Central  Google Scholar 

  8. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3): 413–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hu Y, Bai Y, Chu Z, et al. GSK3 inhibitor-BIO regulates proliferation of female germline stem cells from the postnatal mouse ovary. Cell Prolif. 2012;45(4):287–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lei L, Spradling AC. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles. Proc Natl Acad Sci. 2013;110(21):8585–8590.

    CAS  PubMed  Google Scholar 

  11. Oatley J, Hunt PA. Of mice and (wo) men: purified oogonial stem cells from mouse and human ovaries. Biol Reprod. 2012; 86(6): 196.

    PubMed  PubMed Central  Google Scholar 

  12. Notarianni E. Reinterpretation of evidence advanced for neooogenesis in mammals, in terms of a finite oocyte reserve. J Ovarian Res. 2011; 4(1):1.

    PubMed  PubMed Central  Google Scholar 

  13. Zhang H, Zheng W, Shen Y, Adhikari D, Ueno H, Liu K. Experimental evidence showing that no mitotically active female germline progenitors exist in postnatal mouse ovaries. Proc Natl Acad Sci U S A. 2012;109(31):12580–12585.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffin J, Emery BR, Huang I, Peterson CM, Carrell DT. Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J Exp Clin Assist Reprod. 2006;3:2.

    PubMed  PubMed Central  Google Scholar 

  15. Woods DC, White YA, Tilly JL. Purification of oogonial stem cells from adult mouse and human ovaries: an assessment of the literature and a view toward the future. Reprod Sci. 2013;20(1): 7–15.

    PubMed  PubMed Central  Google Scholar 

  16. Bhartiya D, Sriraman K, Parte S, Patel H. Ovarian stem cells: absence of evidence is not evidence of absence. J Ovarian Res. 2013; 6(1):65.

    PubMed  PubMed Central  Google Scholar 

  17. Parte S, Bhartiya D, Patel H, et al. Dynamics associated with spontaneous differentiation of ovarian stem cells in vitro. J Ovarian Res. 2014;7:25.

    PubMed  PubMed Central  Google Scholar 

  18. Bhartiya D, Kasiviswanathan S, Unni SK, et al. Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. J Histochem Cytochem. 2010;58(12):1093–1106.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science. 2010;327(5965):542–545.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. De Rosa L, De Luca M. Cell biology: dormant and restless skin stem cells. Nature. 2012;489(7415):215–217.

    PubMed  Google Scholar 

  21. Bhartiya D, Unni S, Parte S, Anand S. Very small embryonic-like stem cells: Implications in reproductive biology. Biomed Res Int. 2013;2013:682326.

    PubMed  PubMed Central  Google Scholar 

  22. Lee J, Kim HK, Rho JY, Han YM, Kim J. The human OCT-4 iso-forms differ in their ability to confer self-renewal. J Biol Chem. 2006;281(44):33554–33565.

    CAS  PubMed  Google Scholar 

  23. Kucia M, Reca R, Campbell FR, et al. A population of very small embryonic-like (VSEL) CXCR4 (+) SSEA-1(+) Oct-4+ stem cells identified in adult bone marrow. Leukemia. 2006;20(5): 857–869.

    CAS  PubMed  Google Scholar 

  24. Zuba-Surma EK, Kucia M, Wu W, et al. Very small embryonic-like stem cells are present in adult murine organs: Image stream-based morphological analysis and distribution studies. Cytometry A. 2008;73A(12):1116–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin DM, Liu R, Klich I, et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia. 2010; 24(8):1450–1461.

    CAS  PubMed  Google Scholar 

  26. Mierzejewska K, Heo J, Kang JW, et al. Genome-wide analysis of murine bone marrow-derived very small embryonic-like stem cells reveals that mitogenic growth factor signaling pathways play a crucial role in the quiescence and ageing of these cells. Int J Mol Med. 2013;32(2):281–290.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shin DM, Zuba-Surma EK, Wu W, et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4 (+) very small embryonic-like stem cells. Leukemia. 2009;23(11):2042–2051.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Havens AM, Sun H, Shiozawa Y, et al. Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Dev. 2014; 23(7):689–701.

    PubMed  Google Scholar 

  29. Bhartiya D, Sriraman K, Parte S. Stem cell interaction with somatic niche may hold the key to fertility restoration in cancer patients. Obstet Gynecol Lnt. 2012;2012:921082.

    Google Scholar 

  30. Parte S, Patel H, Sriraman K, Bhartiya D. Isolation and characterization of stem cells in adult mammalian ovary. Methods Mol Biol. 2015;1235:203–229.

    CAS  PubMed  Google Scholar 

  31. Patel H, Bhartiya D, Parte S, Gunjal P, Yedurkar S, Bhatt M. Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. J Ovarian Res. 2013;6:52.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Parte S, Bhartiya D, Manjramkar DD, Chauhan A, Joshi A. Stimulation of ovarian stem cells by follicle stimulating hormone and basic fibroblast growth factor during cortical tissue culture. J Ovarian Res. 2013; 6(1):20.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Babu PS, Krishnamurthy H, Chedrese PJ, Sairam MR. Activation of extracellular-regulated kinase pathways in ovarian granulosa cells by the novel growth factor type 1 follicle-stimulating hormone receptor. Role in hormone signaling and cell proliferation. J Biol Chem. 2000;275(36):27615–27626.

    CAS  PubMed  Google Scholar 

  34. Bhartiya D, Singh J. FSH-FSHR3-stem cells in ovary surface epithelium: basis for adult ovarian biology, failure, aging and cancer. Reproduction. 2015; 149(1):R35–R48.

    PubMed  Google Scholar 

  35. Bhartiya D, Sriraman K, Gunjal P, Modak H. Gonadotropintreatment augments postnatal oogenesis and primordialfollicleassembly in adult mouseovaries? J Ovarian Res. 2012;5(1):32.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Virant-Klun I, Rozman P, Cvjeticanin B, et al. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18(1):137–149.

    CAS  PubMed  Google Scholar 

  37. Bukovsky A, Svetlikova M, Caudle MR. Oogenesis in cultures derived from adult human ovaries. Reprod Biol Endocrinol. 2005;3:17.

    PubMed  PubMed Central  Google Scholar 

  38. Gong SP, Lee ST, Lee EJ, et al. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril. 2010;93(8):2594–2601.

    PubMed  PubMed Central  Google Scholar 

  39. Niikura Y, Niikura T, Tilly JL. Aged mouse ovaries possess rare premeiotic germ cells that can generate oocytes following transplantation into a young host environment. Aging. 2009;1(12): 971–978.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Symonds DA, Tomic D, Miller KP, Flaws JA. Methoxychlor induces proliferation of the mouse ovarian surface epithelium. Toxicol Sci. 2005;83(2):355–362.

    CAS  PubMed  Google Scholar 

  41. Lei L, Zhang H, Jin S, et al. Stage-specific germ-somatic cell interaction directs the primordial folliculogenesis in mouse fetal ovaries. J Cell Physiol. 2006;208(3):640–647.

    CAS  PubMed  Google Scholar 

  42. Wright CS, Hovatta O, Margara R, et al. Effects of follicle-stimulating hormone and serum substitution on the in-vitro growth of human ovarian follicles. Hum Reprod. 1999;14(6):1555–1562.

    CAS  PubMed  Google Scholar 

  43. Pepling ME. Follicular assembly: mechanisms of action. Reproduction. 2012;143(2):139–149.

    CAS  PubMed  Google Scholar 

  44. Gu W, Tekur S, Reinbold R, et al. Mammalian male and female germ cells express a germ cell specific Y-box Protein, MSY2. Biol Reprod. 1998;59(5):1266–1274.

    CAS  PubMed  Google Scholar 

  45. Stovall DW, McGee EA. How chemotherapy harms ovarian function: and how to assess your patients’ risk and reproductive status. SRM. 2010;8(3):21–28.

    Google Scholar 

  46. Woods DC, Tilly JL. An evolutionary perspective on adult female germline stem cell function from flies to humans. Semin Reprod Med. 2013;31(1):24–32.

    PubMed  PubMed Central  Google Scholar 

  47. Anand S, Bhartiya D, Sriraman K, Patel H, Manjramkar DD. Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. J Stem Cell Res Ther. 2014; 4(7):216.

    Google Scholar 

  48. Ratajczak J, Wysoczynski M, Zuba-Surma E, et al. Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells. Exp Hematol. 2011;39(2):225–237.

    CAS  PubMed  Google Scholar 

  49. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell. 2008; 132(4):598–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Park MR, Choi YJ, Kwon DN, et al. Intraovarian transplantation of primordial follicles fails to rescue chemotherapy injured ovaries. Sci Rep. 2013;3:1384.

    PubMed  PubMed Central  Google Scholar 

  51. Virant-Klun I, Skutella T. Stem cells in aged mammalian ovaries. Aging. 2010;2(1):3–6.

    PubMed  PubMed Central  Google Scholar 

  52. Bukovsky A. Ovarian stem cell niche and follicular renewal in mammals. Anat Rec. 2011;294(8):1284–1306.

    CAS  Google Scholar 

  53. Massasa E, Costa XS, Taylor HS. Failure of the stem cell niche rather than loss of oocyte stem cells in the aging ovary. Aging. 2010;2(1):1–2.

    PubMed  PubMed Central  Google Scholar 

  54. Tilly JL, Telfer EE. Purification of germline stem cells from adult mammalian ovaries: a step closer towards control of the female biological clock? Mol Hum Reprod. 2009;15(7):393–398.

    PubMed  PubMed Central  Google Scholar 

  55. Oktay K, Türkçüoğlu I, Rodriguez-Wallberg KA. Four spontaneous pregnancies and three live births following subcutaneous transplantation of frozen banked ovarian tissue: what is the explanation? Fertil Steril. 2011;95(2):804. e7–e10.

    PubMed  Google Scholar 

  56. Demeestere I, Simon P, Buxant F, et al. Ovarian function and spontaneous pregnancy after combined heterotopic and orthotopic cryopreserved ovarian tissue transplantation in a patient previously treated with bone marrow transplantation: case report. Hum Reprod. 2006;21(8):2010–2014.

    PubMed  Google Scholar 

  57. Salooja NI, Szydlo RM, Socie G, et al. Pregnancy outcomes after peripheral blood or bone marrow transplantation: a retrospective survey. Lancet. 2001;358(9278):271–276.

    CAS  PubMed  Google Scholar 

  58. Schimmer AD, Quatermain M, Imrie K, et al. Ovarian function after autologous bone marrow transplantation. J Clin Oncol. 1998;16(7):2359–2363.

    CAS  PubMed  Google Scholar 

  59. Oktay K, Goswami S, Darzynkiewicz Z. Manipulating ovarian aging: a new frontier in fertility preservation. Aging. 2011;3(1): 19–21.

    PubMed  PubMed Central  Google Scholar 

  60. Oktay K. Spontaneous conceptions and live birth after heterotopic ovarian transplantation: is there a germline stem cell connection? Hum Reprod. 2006;21(6):1345–1348.

    PubMed  Google Scholar 

  61. Zhang Z, Shao S, Meistrich ML. The radiation-induced block in spermatogonial differentiation is due to damage to the somatic environment, not the germ cells. J Cell Physiol. 2007;211(1): 149–158.

    CAS  PubMed  Google Scholar 

  62. Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92(2):577–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hilliard TS, Modi DA, Burdette JE. Gonadotropins activate oncogenic pathways to enhance proliferation in normal mouse ovarian surface epithelium. Int J Mol Sci. 2013;14(3):4762–4782.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Burdette JE, Kurley SJ, Kilen SM, Mayo KE, Woodruff TK. Gonadotropin-induced superovulation drives ovarian surface epithelia proliferation in CD1 mice. Endocrinology. 2006; 147(5):2338–2345.

    CAS  PubMed  Google Scholar 

  65. Stewart SL, Querec TD, Graver BN, O’Hare B, Babb JS, Patriotis C. Gonadotropin and steroid hormones stimulate proliferation of the rat ovarian surface epithelium. J Cell Physiol. 2004;198(1): 119–124.

    CAS  PubMed  Google Scholar 

  66. Davies BR, Finnigan DS, Smith SK, Ponder BA. Administration of gonadotropins stimulates proliferation of normal mouse ovarian surface epithelium. Gynecol Endocrinol. 1999;13(2):75–81.

    CAS  PubMed  Google Scholar 

  67. Kerr CL, Cheng L. The dazzle in germ cell differentiation. J Mol Cell Biol. 2010;2(1):26–29.

    CAS  PubMed  Google Scholar 

  68. Toyooka Y, Tsunekawa N, Takahashi Y, Matsui Y, Satoh M, Noce T. Expression and intracellular localization of mouse Vasa-homologue protein during germ cell development. Mech Dev. 2000;93(1–2):139–149.

    CAS  PubMed  Google Scholar 

  69. Reynolds N, Collier B, Maratou K, et al. Dazl binds in vivo to specific transcripts and can regulate the pre-meiotic translation of Mvh in germ cells. Hum Mol Genet. 2005;14(24):3899–3909.

    CAS  PubMed  Google Scholar 

  70. Koubova J, Menke DB, Zhou Q, Capel B, Griswold MD, Page DC. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci USA. 2005;103(8): 2474–2479.

    Google Scholar 

  71. Nicholas CR, Haston KM, Pera RA. Intact fetal ovarian cord formation promotes mouse oocyte survival and development. BMC Dev Biol. 2010;10:2.

    PubMed  PubMed Central  Google Scholar 

  72. Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy. 2008;10(4):353–363.

    CAS  PubMed  Google Scholar 

  73. Liu T, Huang Y, Guo L, Cheng W, Zou G. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci. 2012;9(7): 592–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Takehara Y, Yabuuchi A, Ezoe K, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest. 2013;93(2):181–193.

    CAS  PubMed  Google Scholar 

  75. Sun M, Wang S, Li Y, et al. Adipose-derived stem cells improved mouse ovary function after chemotherapy-induced ovary failure. Stem Cell Res Ther. 2013; 4(4):80.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang S, Yu L, Sun M, et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. Biomed Res Int. 2013;2013:690491.

    PubMed  PubMed Central  Google Scholar 

  77. Irie N, Weinberger L, Tang WWC, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160(1–2): 253–268. doi:10.1016/j.cell.2014.12.013.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bhartiya D, Hinduja I, Patel H, Bhilawadikar R. Making gametes from pluripotent stem cells—a promising role for very small embryonic-like stem cells. Reprod Biol Endocrinol. 2014;12: 114–123.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sriraman, K., Bhartiya, D., Anand, S. et al. Mouse Ovarian Very Small Embryonic-Like Stem Cells Resist Chemotherapy and Retain Ability to Initiate Oocyte-Specific Differentiation. Reprod. Sci. 22, 884–903 (2015). https://doi.org/10.1177/1933719115576727

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115576727

Keywords

Navigation