Skip to main content
Log in

Lipoxin A4 Suppresses Estrogen-Induced Epithelial-Mesenchymal Transition via ALXR-Dependent Manner in Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

Epithelial-mesenchymal transition (EMT) is essential for embryogenesis, fibrosis, and tumor metastasis. Aberrant EMT phenomenon has been reported in endometriotic tissues of patients with endometriosis (EM). In this study, we further investigated the molecular mechanism of which lipoxin A4 (LXA4) suppresses estrogen (E2)-induced EMT in EM.

Study Design

The EMT markers were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot in eutopic endometrial epithelial cells (EECs) or investigated by immunohistochemistry and qRT-PCR in endometriotic lesion of EM mice. The invasion and migration under different treatments were assessed bytranswell assays with or without Matrigel. The messenger RNA (mRNA) and activities of matrix metalloproteinase 2 (MMP-2) and MMP-9 were determined by qRT-PCR and gelatin zymography, respectively. Luciferase reporter assay was used to measure the activity of zinc finger E-box binding homeobox I (ZEBI) promoter. The level of E2 in endometriotic tissues was assessed by enzyme-linked immunosorbent assay.

Results

In eutopic EECs, stimulatory effects of E2 on EMT progress, migration, and invasion were all diminished by LXA4. Lipoxin A4 reduced E2-induced ZEBI promoter activity. Lipoxin A4 also attenuated the phosphorylation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase induced by E2. Co-incubation with Boc-2 rather than DMF antagonized the influence of LXA4. Animal experiments showed that LXA4 inhibited the EMT progress, MMP expression, and proteinase activities of endometriotic lesion in an LXA4 receptor (ALXR) manner, which suppressed the progression of EM. ZEBI mRNA expression was upregulated and well correlated with E2 level in human endometrium.

Conclusion

Lipoxin A4 suppresses E2-induced EMT via ALXR-dependent manner in eutopic EECs, which reveals a novel biological effect of LXA4 in EM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC. Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  2. Giudice LC, Clinical practice. Endometriosis. N Engl J Med. 2010;362(25):2389–2398.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vercellini P, Vigano P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2014;10(5):261–275.

    CAS  PubMed  Google Scholar 

  4. Vercellini P, Crosignani P, Somigliana E, Vigano P, Frattaruolo MP, Fedele L. ‘Waiting for Godot’: a commonsense approach to the medical treatment of endometriosis. Hum Reprod. 2011;26(1):3–13.

    PubMed  Google Scholar 

  5. Garcia-Velasco JA, Quea G. Medical treatment of endometriosis. Minerva Ginecol. 2005;57(3):249–255.

    CAS  PubMed  Google Scholar 

  6. Platteeuw L, D’Hooghe T. Novel agents for the medical treatment of endometriosis. Curr Opin Obstet Gynecol. 2014;26(4):243–252.

    PubMed  Google Scholar 

  7. Vanhie A, Tomassetti C, Peeraer K, Meuleman C, D’Hooghe T. Challenges in the development of novel therapeutic strategies for treatment of endometriosis. Expert Opin Ther Targets. 2016; 20(5):593–600.

    CAS  PubMed  Google Scholar 

  8. Chen YJ, Li HY, Huang CH, et al. Oestrogen-induced epithelial-mesenchymal transition of endometrial epithelial cells contributes to the development of adenomyosis. J Pathol. 2010;222(3):261–270.

    CAS  PubMed  Google Scholar 

  9. Yoshida K, Yoshihara K, Adachi S, et al. Possible involvement of the E-cadherin gene in genetic susceptibility to endometriosis. Hum Reprod. 2012;27(6):1685–1689.

    CAS  PubMed  Google Scholar 

  10. Oh SJ, Shin JH, Kim TH, et al. beta-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. J Pathol. 2013;231(2):210–222.

    CAS  PubMed  Google Scholar 

  11. Liao CJ, Li PT, Lee YC, Li SH, Chu ST. Lipocalin 2 induces the epithelial-mesenchymal transition in stressed endometrial epithelial cells: possible correlation with endometriosis development in a mouse model. Reproduction. 2014;147(2):179–187.

    CAS  PubMed  Google Scholar 

  12. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890.

    CAS  PubMed  Google Scholar 

  13. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–1428.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Park SH, Cheung LW, Wong AS, Leung PC. Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha. Mol Endocrinol. 2008;22(9):2085–2098.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maderna P, Godson C. Lipoxins: resolutionary road. Br J Pharmacol. 2009;158(4):947–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Serhan CN, Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li G, Wu P, Xu Y, et al. The effect of lipoxin A4 on the interaction between macrophage and osteoblast: possible role in the treatment of aseptic loosening. BMC Musculoskelet Dis. 2009;10(1):57–58.

    CAS  Google Scholar 

  19. Chinthamani S, Odusanwo O, Mondal N, Nelson J, Neelamegham S, Baker OJ. Lipoxin A4 inhibits immune cell binding to salivary epithelium and vascular endothelium. Am J Physiol Cell Physiol. 2012;302(7):968–978.

    Google Scholar 

  20. Hao H, Xu F, Hao J, et al. Lipoxin A4 suppresses lipopolysaccharide-induced hela cell proliferation and migration via NF-KB pathway. Inflammation. 2015;38(1):400–408.

    CAS  PubMed  Google Scholar 

  21. Wu RF, Zhou WD, Chen S, et al. Lipoxin A4 suppresses the development of endometriosis in an ALX receptor-dependent manner via the p38 MAPK pathway. Br J Pharmacol. 2014; 171(21):4927–4940.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol. 2013;13(4):632–640.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Corminboeuf O, Leroy X. FPR2/ALXR agonists and the resolution of inflammation. J Med Chem. 2015;58(2):537–559.

    CAS  PubMed  Google Scholar 

  24. Schaldach CM, Riby J, Bjeldanes LF. Lipoxin A4: a new class of ligand for the Ah receptor. Biochemistry. 1999;38(23):7594–7600.

    CAS  PubMed  Google Scholar 

  25. Machado FS, Johndrow JE, Esper L, et al. Anti-inflammatory actions of lipoxin A4 and aspirin-triggered lipoxin are SOCS-2 dependent. Nat Med. 2006;12(3):330–334.

    CAS  PubMed  Google Scholar 

  26. Russell R, Gori I, Pellegrini C, Kumar R, Achtari C, Canny GO. Lipoxin A4 is a novel estrogen receptor modulator. FASEB J. 2011;25(12):4326–4337.

    CAS  PubMed  Google Scholar 

  27. Chen S, Wu RF, Su L, Zhou WD, Zhu MB, Chen QH. Lipoxin A4 regulates expression of the estrogen receptor and inhibits 17P-estradiol induced p38 mitogen-activated protein kinase phosphorylation in human endometriotic stromal cells. Fertil Steril. 2014;102(1):264–271.

    CAS  PubMed  Google Scholar 

  28. Chen QH, Zhou WD, Pu DM, Huang QS, Li T, Chen QX. 15-Epilipoxin A(4) inhibits the progression of endometriosis in a murine model. Fertil Steril. 2010;93(5):1440–1447.

    CAS  PubMed  Google Scholar 

  29. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–1108.

    CAS  PubMed  Google Scholar 

  30. Ran J, Lin DL, Wu RF, et al. ZEB1 promotes epithelial-mesenchymal transition in cervical cancer metastasis. Fertil Steril. 2015;103(6):1606–1614.

    CAS  PubMed  Google Scholar 

  31. Robboy SJ, Bean SM. Pathogenesis of endometriosis. Reprod Biomed Online. 2010;21(1):4–5.

    PubMed  Google Scholar 

  32. Shaco-Levy R, Sharabi S, Benharroch D, Piura B, Sion-Vardy N. Matrix metalloproteinases 2 and 9, E-cadherin, and beta-catenin expression in endometriosis, low-grade endometrial carcinoma and non-neoplastic eutopic endometrium. Eur J Obstet Gynecol Reprod Biol. 2008;139(2):226–232.

    CAS  PubMed  Google Scholar 

  33. Weigel MT, Kramer J, Schem C, et al. Differential expression of MMP-2, MMP-9 and PCNA in endometriosis and endometrial carcinoma. Eur J Obstet Gynecol Reprod Biol. 2012;160(1):74–78.

    CAS  PubMed  Google Scholar 

  34. Xin L, Hou Q, Xiong QI, Ding X. Association between matrix metalloproteinase-2 and matrix metalloproteinase-9 polymorphisms and endometriosis: a systematic review and meta-analysis. Biomed Rep. 2015;3(4):559–565.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Orlichenko LS, Radisky DC. Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin Exp Metastasis. 2008;25(6):593–600.

    CAS  PubMed  Google Scholar 

  36. Wang D, Liu Y, Han J, et al. Puerarin suppresses invasion and vascularization of endometriosis tissue stimulated by 17P-estradiol. PIoS One. 2011;6(9):e25011.

    CAS  Google Scholar 

  37. Han SJ, Hawkins SM, Begum K, et al. A new isoform of steroid receptor coactivator-1 is crucial for pathogenic progression of endometriosis. Nat Med. 2012;18(7):1102–1111.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Q, Duan J, Liu X, Guo SW. Platelets drive smooth muscle metaplasia and fibrogenesis in endometriosis through epithelial-mesenchymal transition and fibroblast-to-myofibroblast transdif-ferentiation. Mol Cell Endocrinol. 2016;428:1–16.

    PubMed  Google Scholar 

  39. Ohlsson Teague EM, Van der Hoek KH, Van der Hoek MB, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23(2):265–275.

    PubMed  PubMed Central  Google Scholar 

  40. Bartley J, Julicher A, Hotz B, Mechsner S, Hotz H. Epithelial to mesenchymal transition (EMT) seems to be regulated differently in endometriosis and the endometrium. Arch Gynecol Obstet. 2014;3(5):643–650.

    Google Scholar 

  41. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–1912.

    CAS  PubMed  Google Scholar 

  42. Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000;12(1):1–13.

    CAS  PubMed  Google Scholar 

  43. Ryan MB, Der CJ, Wang-Gillam A, Cox AD. Targeting -mutant cancers: is ERK the key? Trends Cancer. 2015;1(3):183–198.

    PubMed  PubMed Central  Google Scholar 

  44. Burow M. Inhibition of p38 mitogen-activated protein kinase alters microRNA expression and reverses epithelial-to-mesenchymal transition. Int J Oncol. 2013;42(4):1139–1150.

    PubMed  PubMed Central  Google Scholar 

  45. Ma B, Wells A. The mitogen-activated protein (MAP) kinases p38 and extracellular signal-regulated kinase (ERK) are involved in hepatocyte-mediated phenotypic switching in prostate cancer cells. J Biol Chem. 2014;289(16):11153–11161.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Seval Y. Estrogen-mediated regulation of p38 mitogen-activated protein kinase in human endometrium. J Clin Endocrinol Metab. 2006;91(6):2349–2357.

    CAS  PubMed  Google Scholar 

  47. Matsuzaki S, Darcha C. Co-operation between the AKT and ERK signaling pathways may support growth of deep endometriosis in a fibrotic microenvironment in vitro. Hum Reprod. 2015;30(7):1606–1616.

    CAS  PubMed  Google Scholar 

  48. Cheng W, Chen L, Yang S, et al. Puerarin suppresses proliferation of endometriotic stromal cells partly via the MAPK signaling pathway induced by 17P-estradiol-BSA. PLoS One. 2012;7(9):e45529.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. McKinnon BD, Kocbek V, Nirgianakis K, Bersinger NA, Mueller MD. Kinase signalling pathways in endometriosis: potential targets for non-hormonal therapeutics. Hum Reprod Update. 2016;22(3). pii: dmv060.

    Google Scholar 

  50. Zhou WD, Yang HM, Wang Q, et al. SB203580, a p38 mitogen-activated protein kinase inhibitor, suppresses the development of endometriosis by down-regulating proinflammatory cytokines and proteolytic factors in a mouse model. Hum Reprod. 2010; 25(12):3110–3116.

    CAS  PubMed  Google Scholar 

  51. Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology. 2009;127(3):299–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Igarashi T, Osuga U, Tsutsumi O, et al. Expression of Ah receptor and dioxin-related genes in human uterine endometrium in women with or without endometriosis. Endocr J. 1999;46(6):765–772.

    CAS  PubMed  Google Scholar 

  53. Streuli I, de Ziegler D, Borghese B, et al. New treatment strategies and emerging drugs in endometriosis. Expert Opin Emerg Drugs. 2012;17(1):83–104.

    CAS  Google Scholar 

  54. Xu Z, Zhao F, Lin F, Chen J, Huang Y. Lipoxin A4 inhibits the development of endometriosis in mice: the role of anti-inflammation and anti-angiogenesis. Am J Reprod Immunol. 2012;67(6):491–497.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Xi Chen PhD or Qiong-Hua Chen PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, RF., Huang, ZX., Ran, J. et al. Lipoxin A4 Suppresses Estrogen-Induced Epithelial-Mesenchymal Transition via ALXR-Dependent Manner in Endometriosis. Reprod. Sci. 25, 566–578 (2018). https://doi.org/10.1177/1933719117718271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117718271

Keywords

Navigation