Skip to main content

Advertisement

Log in

Sex-Dependent Influence of Developmental Toxicant Exposure on Group B Streptococcus-Mediated Preterm Birth in a Murine Model

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Infectious agents are a significant risk factor for preterm birth (PTB); however, the simple presence of bacteria is not sufficient to induce PTB in most women. Human and animal data suggest that environmental toxicant exposures may act in concert with other risk factors to promote PTB. Supporting this “second hit” hypothesis, we previously demonstrated exposure of fetal mice (Fl animals) to the environmental endocrine disruptor 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to an increased risk of spontaneous and infection-mediated PTB in adult animals. Surprisingly, adult FImaes also confer an enhanced risk of PTB to their control partners. Herein, we used a recently established model of ascending group B Streptococcus (GBS) infection to explore the impact of a maternal versus paternal developmental TCDD exposure on infection-mediated PTB in adulthood. Group B Streptococcus is an important contributor to PTB in women and can have serious adverse effects on their infants. Our studies revealed that although gestation length was reduced in control mating pairs exposed to low-dose GBS, dams were able to clear the infection and bacterial transmission to pups was minimal. In contrast, exposure of pregnant Flfemales to the same GBS inoculum resulted in 100% maternal and fetal mortality. Maternal health and gestation length were not impacted in control females mated to FImales and exposed to GBS; however, neonatal survival was reduced compared to controls. Our data revealed a sex-dependent impact of parental TCDD exposure on placental expression of Toll-like receptor 2 and glycogen production, which may be responsible for the differential impact on fetal and maternal outcomes in response to GBS infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson MP. In the arc of history: AIHA and the movement to reform the Toxic Substances Control Act. J Occup Environ Hyg. 2012;9(5):D87–D94.

    Article  PubMed  Google Scholar 

  2. Vinceti M, Malagoli C, Teggi S, et al. Adverse pregnancy out-comes in a population exposed to the emissions of a municipal waste incinerator. Sci Total Environ. 2008;407(1):116–121.

    Article  CAS  PubMed  Google Scholar 

  3. Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil steril. 2016;106(4):905–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: a review on the major concerns. Birth Defects Res C Embryo Today. 2016;108(3):224–242.

    Article  CAS  PubMed  Google Scholar 

  5. Schug TT, Johnson AF, Birnbaum LS, et al. Minireview: endocrine disrupters: past lessons and future directions. Mol endocrinol. 2016;30(8):833–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boule LA, Winans B, Lawrence BP. Effects of developmental activation of the AhR on CD4+ T-cell responses to influenza virus infection in adult mice. Environ Health Perspect. 2014; 122(11):1201–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boule LA, Burke CG, Fenton BM, Thevenet-Morrison K, Jusko TA, Lawrence BP. Developmental activation of the AHR increases effector CD4+ T cells and exacerbates symptoms in autoimmune disease-prone Gnaq+/-mice. Toxicol Sci. 2015;148(2):555–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naville D, Pinteur C, Vega N, et al. Low-dose food contaminants trigger sex-specific, hepatic metabolic changes in the progeny of obese mice. FASEB J. 2013;27(9):3860–3870.

    Article  CAS  PubMed  Google Scholar 

  9. Sobolewski M, Conrad K, Allen JL, et al. Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology. 2014; 45:121–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vanden Heuvel JP, Lucier G. Environmental toxicology of poly-chlorinated dibenzo-p-dioxins and polychlorinated dibenzofur-ans. Environ Health Perspect. 1993;100:189-200.

    Article  Google Scholar 

  11. Bruner-Tran KL, Ding T, Yeoman KB, Archibong A, Arosh JA, Osteen KG. Developmental exposure of mice to dioxin promotes transgenerational testicular inflammation and an increased risk of preterm birth in unexposed mating partners. PLoS One. 2014; 9(8):e105084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bruner-Tran KL, Osteen KG. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol. 2011;31 (3): 344–350.

    Article  CAS  PubMed  Google Scholar 

  13. Ding T, McConaha M, Boyd KL, Osteen KG, Bruner-Tran KL. Developmental dioxin exposure of either parent is associated with an increased risk of preterm birth in adult mice. Reprod Toxicol. 2011;31(3):351–358.

    Article  CAS  PubMed  Google Scholar 

  14. Bruner-Tran KL, Gnecco J, Ding T, Glore DR, Pensabene V, Osteen KG. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models. Reprod Toxicol. 2017;68:59-71.

    Article  CAS  PubMed  Google Scholar 

  15. Vornhagen J, Adams Waldorf KM, Rajagopal L. Perinatal group B streptococcal infections: virulence factors, immunity, and prevention strategies. Trends Microbiol. 2017;25(11):919–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hansen SM, Uldbjerg N, Kilian M, Sorensen UB. Dynamics of Streptococcus agalactiae colonization in women during and after pregnancy and in their infants. J Clin Microbiol. 2004;42(1):83–89.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kwatra G, Adrian PV, Shiri T, Buchmann EJ, Cutland CL, Madhi SA. Serotype-specific acquisition and loss of group B Streptococcus recto-vaginal colonization in late pregnancy. PLoS One. 2014; 9(6):e98778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Namavar Jahromi B, Poorarian S, Poorbarfehee S. The prevalence and adverse effects of group B streptococcal colonization during pregnancy. Arch Iran Med. 2008;11(6):654–657.

    PubMed  Google Scholar 

  19. Benitz WE, Gould JB, Druzin ML. Risk factors for early-onset group B streptococcal sepsis: estimation of odds ratios by critical literature review. Pediatrics. 1999;103(6):e77.

    Article  CAS  PubMed  Google Scholar 

  20. McDonald H, Vigneswaran R, O’Loughlin JA. Group B strepto-coccal colonization and preterm labour. Aust NZ J Obstet Gynaecol. 1989;29(3):291–293.

    Article  CAS  Google Scholar 

  21. Nomura ML, Passini Junior R, Oliveira UM, Calil R. Group B Streptococcus maternal and neonatal colonization in preterm rupture of membranes and preterm labor [in Portuguese]. Rev Bras Ginecol Obstet. 2009;31(8):397–403.

    Article  PubMed  Google Scholar 

  22. McConaha ME, Ding T, Lucas JA, Arosh JA, Osteen KG, Bruner-Tran KL. Preconception omega-3 fatty acid supplementation of adult male mice with a history of developmental 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure prevents preterm birth in unexposed female partners. Reproduction. 2011;142(2):235–241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barton SC, Adams CA, Norris ML, Surani MA. Development of gynogenetic and parthenogenetic inner cell mass and trophectoderm tissues in reconstituted blastocysts in the mouse. J Embryol Exp Morphol. 1985;90:267-285.

    CAS  PubMed  Google Scholar 

  24. Wang X, Miller DC, Harman R, Antczak DF, Clark AG. Paternally expressed genes predominate in the placenta. Proc Natl Acad Sci USA. 2013;110:10705–10710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Binder NK, Beard SA, Kaitu’u-Lino TJ, Tong S, Hannan NJ, Gardner DK. Paternal obesity in a rodent model affects placental gene expression in a sex-specific manner. Reproduction. 2015; 149(5):435–444.

    Article  CAS  PubMed  Google Scholar 

  26. McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell. 1984; 37(1):179–183.

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell M, Strick R, Strissel PL, et al. Gene expression and epigenetic aberrations in Fl-placentas fathered by obese males. Mol Reprod Dev. 2017;84(4):316–328.

    Article  CAS  PubMed  Google Scholar 

  28. John R, Hemberger M. A placenta for life. Reprod Biomed Online. 2012;25(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  29. Ly L, Chan D, Aarabi M, et al. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation. Mol Hum Reprod. 2017;23(7):461–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whidbey C, Harrell MI, Burnside K, et al. A hemolytic pigment of Group B Streptococcus allows bacterial penetration of human placenta. J Exp Med. 2013;210(6):1265–1281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Winram SB, Jonas M, Chi E, Rubens CE. Characterization of group B streptococcal invasion of human chorion and amnion epithelial cells In vitro. Infect immun. 1998;66(10):4932–4941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Randis TM, Gelber SE, Hooven TA, et al. Group B Streptococcus beta-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. J Infect Dis. 2014;210(2):265–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682.

    Article  CAS  PubMed  Google Scholar 

  34. Fitzpatrick M. Measuring cell fluorescence using Image J. In: The Open lab Book. 2014. http://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluore scence-using-imagej.html

    Google Scholar 

  35. Bock KW. Human and rodent aryl hydrocarbon receptor (AHR): from mediator of dioxin toxicity to physiologic AHR functions and therapeutic options. Biol Chem. 2017;398(4):455–464.

    Article  CAS  PubMed  Google Scholar 

  36. Gennings C, Ellis R, Ritter JK. Linking empirical estimates of body burden of environmental chemicals and wellness using NHANES data. Environ Int. 2012;39(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  37. Weber H, Birnbaum LS. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,7,8-tetrachlorodibenzofuran (TCDF) in pregnant C57BL/6 N mice: distribution to the embryo and excretion. Arch Toxicol. 1985;57(3):159–162.

    Article  CAS  PubMed  Google Scholar 

  38. Davies HD, Adair C, McGeer A, et al. Antibodies to capsular polysaccharides of group B Streptococcus in pregnant Canadian women: relationship to colonization status and infection in the neonate. J Infect Dis. 2001;184(3):285–291.

    Article  CAS  PubMed  Google Scholar 

  39. Kothary V, Doster RS, Rogers LM, et al. Group B Streptococcus induces neutrophil recruitment to gestational tissues and elaboration of extracellular traps and nutritional immunity. Front Cell Infect Microbiol. 2017;7:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nguyen DH, Zhou T, Shu J, Mao J. Quantifying chromogen intensity in immunohistochemistry via reciprocal intensity. Cancer InCytes. 2013;2(1):1–4

    Google Scholar 

  41. Ariel I, Goldman-Wohl D, Yagel S, Gazit E, Loewenthal R. Triple paternal contribution to a normal/complete molar chimeric singleton placenta. Hum Reprod. 2017;32(5):993–998.

    Article  CAS  PubMed  Google Scholar 

  42. Malassine A, Frendo JL, Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum Reprod Update. 2003;9(6):531–539.

    Article  CAS  PubMed  Google Scholar 

  43. Surani MA, Barton SC, Norris ML. Influence of parental chromosomes on spatial specificity in androgenetic-parthe-nogenetic chimaeras in the mouse. Nature. 1987;326(6111): 395–397.

    Article  CAS  PubMed  Google Scholar 

  44. Bruner-Tran KL, Resuehr D, Ding T, Lucas JA, Osteen KG. The role of endocrine disrupters in the epigenetics of reproductive disease and dysfunction: potential relevance to humans. Curr Obstet Gynecol Rep. 2012;1(3):116–123.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Akison LK, Nitert MD, Clifton VL, Moritz KM, Simmons DG. Review: alterations in placental glycogen deposition in complicated pregnancies: current preclinical and clinical evidence. Placenta. 2017;54:52-58.

    Article  CAS  PubMed  Google Scholar 

  46. Domingo P, Barquet N, Alvarez M, Coll P, Nava J, Garau J. Group B streptococcal meningitis in adults: report of twelve cases and review. Clin Infect Dis. 1997;25(5): 1180–1187.

    Article  CAS  PubMed  Google Scholar 

  47. Yanai H, Ban T, Taniguchi T. High-mobility group box family of proteins: ligand and sensor for innate immunity. Trends Immunol. 2012;33(12):633–640.

    Article  CAS  PubMed  Google Scholar 

  48. Luu TM, Rehman Mian MO, Nuyt AM. Long-term impact of preterm birth: neurodevelopmental and physical health outcomes. Clin Perinatol. 2017;44(2):305–314.

    Article  PubMed  Google Scholar 

  49. Nuyt AM, Lavoie JC, Mohamed I, Paquette K, Luu TM. Adult consequences of extremely preterm birth: cardiovascular and metabolic diseases risk factors, mechanisms, and prevention ave-nues. Clin Perinatol. 2017;44(2):315–332.

    Article  PubMed  Google Scholar 

  50. March of Dimes, PMNCH, Save the children, WHO. Born Too Soon: The Global Action Report on Preterm Birth. Eds CP Howson, MV Kinney, JE Lawn. World Health Organization. Geneva, 2012.

    Google Scholar 

  51. Palomar L, DeFranco EA, Lee KA, Allsworth JE, Muglia LJ. Paternal race is a risk factor for preterm birth. Am J Obstet Gynecol. 2007;197(2):152.e1–152.e7.

    Article  Google Scholar 

  52. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol. 2015;13:35.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Simhan HN, Krohn MA. Paternal race and preterm birth. Am J Obstet Gynecol. 2008;198(6):644.e1–644.e6.

    Article  Google Scholar 

  54. Stillerman KP, Mattison DR, Giudice LC, Woodruff TJ. Environmental exposures and adverse pregnancy outcomes: a review of the science. Reprod Sci. 2008;15(7):631–650.

    Article  PubMed  Google Scholar 

  55. Candela S, Ranzi A, Bonvicini L, et al. Air pollution from incin-erators and reproductive outcomes: a multisite study. Epidemiology. 2013;24(6):863–670.

    Article  PubMed  Google Scholar 

  56. Jurewicz J, Hanke W, Radwan M, Bonde JP. Environmental fac-tors and semen quality. Int J Occup Med Environ Health. 2009; 22(4):305–329.

    Article  PubMed  Google Scholar 

  57. Mocarelli P, Gerthoux PM, Patterson DG Jr, et al. Dioxin exposure, from infancy through puberty, produces endocrine disruption and affects human semen quality. Environ Health Perspect. 2008;116(1):70–77.

    Article  CAS  PubMed  Google Scholar 

  58. Vested A, Ramlau-Hansen CH, Olsen SF, et al. Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and reproductive hormones in adult men. Environ Health Perspect. 2013;121(4):453–458.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lawrence BP, Vorderstrasse BA. New insights into the aryl hydrocarbon receptor as a modulator of host responses to infection. Semin Immunopathol. 2013;35(6):615–626.

    Article  CAS  PubMed  Google Scholar 

  60. Mulero-Navarro S, Fernandez-Salguero PM. New trends in aryl hydrocarbon receptor biology. Front Cell Dev Biol. 2016;4:45.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Abbott BD, Schmid JE, Pitt JA, et al. Adverse reproductive out-comes in the transgenic Ah receptor-deficient mouse. Toxicol Appl Pharmacol. 1999;155(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  62. McCarthy CE, Duffney PF, Wyatt JD, Thatcher TH, Phipps RP, Sime PJ. Comparison of in vitro toxicological effects of biomass smoke from different sources of animal dung. Toxicol In Vitro. 2017;43:76-86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spannhake EW, Reddy SP, Jacoby DB, Yu XY, Saatian B, Tian J. Synergism between rhinovirus infection and oxidant pollutant exposure enhances airway epithelial cell cytokine production. Environ Health Perspect. 2002;110:665-670.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Teske S, Bohn AA, Regal JF, Neumiller JJ, Lawrence BP. Activation of the aryl hydrocarbon receptor increases pulmonary neutrophilia and diminishes host resistance to influenza A virus. Am J Physiol lung Cell Mol Physiol. 2005;289(1):L111–L124.

    Article  CAS  PubMed  Google Scholar 

  65. Koumans EH, Rosen J, van Dyke MK, et al. Prevention of mother-to-child transmission of infections during pregnancy: implementation of recommended interventions, United States, 2003–2004. Am J Obstet Gynecol. 2012;206(2):158.e1–15.e11.

    Article  Google Scholar 

  66. Verani JR, Schrag SJ. Group B streptococcal disease in infants: progress in prevention and continued challenges. Clin Perinatol. 2010;37(2):375–392.

    Article  PubMed  Google Scholar 

  67. Mancuso G, Midiri A, Beninati C, et al. Dual role of TLR2 and myeloid differentiation factor 88 in a mouse model of invasive group B streptococcal disease. J Immunol. 2004;172(10): 6324–6329.

    Article  CAS  PubMed  Google Scholar 

  68. Rosini R, Margarit I. Biofilm formation by Streptococcus agalac-tiae: influence of environmental conditions and implicated virulence factors. Front Cell Infect Microbiol. 2015;5:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Becker KW, Skaar EP. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev. 2014; 38(6): 1235–1249.

    Article  CAS  PubMed  Google Scholar 

  70. Mor G, Cardenas I. The immune system in pregnancy: a unique complexity. Am J Reprod Immunol. 2010;63(6):425–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Barboza R, Lima FA, Reis AS, et al. TLR4-mediated placental pathology and pregnancy outcome in experimental malaria. Sci Rep. 2017;7(1):8623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hayati AR, Mohamed AE, Tan GC. An immunohistochemical study of Toll-like receptors 2 and 4 in placenta with and without infection. Malays J Pathol. 2010;32(1):13–19.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaylon L. Bruner-Tran PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, T., Lambert, L.A., Aronoff, D.M. et al. Sex-Dependent Influence of Developmental Toxicant Exposure on Group B Streptococcus-Mediated Preterm Birth in a Murine Model. Reprod. Sci. 25, 662–673 (2018). https://doi.org/10.1177/1933719117741378

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117741378

Keywords

Navigation