Skip to main content

Advertisement

Log in

Regulation of Embryonic Signal on Talin1 in Mouse Endometrium

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Embryonic signals can affect the spatiotemporal-specific expression of the uterus to establish a successful pregnancy. Our previous study has found that talin1 underwent dynamic changes in the mouse endometrium during peri-implantation period. However, whether talin1 is affected by the embryo signals is not clear. In order to investigate the effect of embryonic signals, especially human chorionic gonadotropin (HCG) on talin1, we have designed mouse models of pseudopregnancy, delayed implantation and activation, and HCG treatment. Using these models, the expression of talin1 in the mouse endometrium was determined by immunohistochemistry and Western blotting. In the pseudopregnancy model, an increased expression of talin1 was found from day 3 to day 5, whereas the talin1 protein was decreased on day 5 in the normal pregnant mice. In the delayed implantation model, a strong cytoplasmic staining of talin1 was found, especially in stromal cells. However, after activation of the implantation, the expression of talin1 decreased (P <.05). Furthermore, a significantly lower expression of talin1 was found at the implantation site when compared to the interimplantation sites (P <.05). In the HCG treatment model, an intrauterine perfusion of 10u HCG significantly reduced the expression of talin1 in both stromal and epithelial cells in pseudopregnant mice (P <.05), although further increase in the HCG concentration did not have additional effect on expression of talin1. Taken together, our data suggest that the presence of embryos can affect expression of talin1 in the mouse endometrium, and a certain concentration of HCG can regulate its expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson LM, Coward K. Molecular mechanisms of membrane interaction at implantation. Birth Defects Res C Embryo Today. 2016;108(1):19–32.

    CAS  PubMed  Google Scholar 

  2. Cuman C, Menkhorst EM, Rombauts LJ, et al. Preimplantation human blastocysts release factors that differentially alter human endometrial epithelial cell adhesion and gene expression relative to IVF success. Hum Reprod. 2013;28(5):1161–1171.

    CAS  PubMed  Google Scholar 

  3. van Mourik MS, Macklon NS, Heijnen CJ. Embryonic implantation: cytokines, adhesion molecules, and immune cells in establishing an implantation environment. J Leukocyte Biol. 2009;85(1):4–19.

    PubMed  Google Scholar 

  4. Bonduelle ML, Dodd R, Liebaers I, Van Steirteghem A, Williamson R, Akhurst R. Chorionic gonadotrophin-beta mRNA, a trophoblast marker, is expressed in human 8-cell embryos derived from tripronucleate zygotes. Hum Reprod. 1988;3(7):909–914.

    CAS  PubMed  Google Scholar 

  5. Jurisicova A, Antenos M, Kapasi K, Meriano J, Casper RF. Variability in the expression of trophectodermal markers beta-human chorionic gonadotrophin, human leukocyte antigen-G and pregnancy specific beta-1 glycoprotein by the human blastocyst. Hum Reprod. 1999;14(7):1852–1858.

    CAS  PubMed  Google Scholar 

  6. Hoshina M, Boothby M, Hussa R, Pattillo R, Camel HM, Boime I. Linkage of human chorionic gonadotrophin and placental lactogen biosynthesis to trophoblast differentiation and tumorigenesis. Placenta. 1985;6(2):163–172.

    CAS  PubMed  Google Scholar 

  7. Shikone T, Yamoto M, Kokawa K, Yamashita K, Nishimori K, Nakano R. Apoptosis of human corpora lutea during cyclic luteal regression and early pregnancy. J Clin Endocrinol Metabol. 1996;81(6):2376–2380.

    CAS  Google Scholar 

  8. Lopata A, Hay DL. The potential of early human embryos to form blastocysts, hatch from their zona and secrete HCG in culture. Hum Reprod. 1989;4(8 suppl):87–94.

    CAS  PubMed  Google Scholar 

  9. Fluhr H, Carli S, Deperschmidt M, Wallwiener D, Zygmunt M, Licht P. Differential effects of human chorionic gonadotropin and decidualization on insulin-like growth factors-I and -II in human endometrial stromal cells. Fertil Steril. 2008;90(4 suppl):1384–1389.

    CAS  PubMed  Google Scholar 

  10. Fluhr H, Bischof-Islami D, Krenzer S, Licht P, Bischof P, Zygmunt M. Human chorionic gonadotropin stimulates matrix metalloproteinases-2 and −9 in cytotrophoblastic cells and decreases tissue inhibitor of metalloproteinases-1, -2, and -3 in decidualized endometrial stromal cells. Fertil Steril. 2008;90(4 suppl):1390–1395.

    CAS  PubMed  Google Scholar 

  11. Licht P, Fluhr H, Neuwinger J, Wallwiener D, Wildt L. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol. 2007;269(1-2):85–92.

    CAS  PubMed  Google Scholar 

  12. Paiva P, Hannan NJ, Hincks C, et al. Human chorionic gonadotrophin regulates FGF2 and other cytokines produced by human endometrial epithelial cells, providing a mechanism for enhancing endometrial receptivity. Hum Reprod. 2011;26(5):1153–1162.

    CAS  PubMed  Google Scholar 

  13. Policastro P, Ovitt CE, Hoshina M, Fukuoka H, Boothby MR, Boime I. The beta subunit of human chorionic gonadotropin is encoded by multiple genes. J Biol Chem. 1983;258(19):11492–11499.

    CAS  PubMed  Google Scholar 

  14. Crawford RJ, Tregear GW, Niall HD. The nucleotide sequences of baboon chorionic gonadotropin beta-subunit genes have diverged from the human. Gene. 1986;46(2-3):161–169.

    CAS  PubMed  Google Scholar 

  15. Tepper MA, Roberts JL. Evidence for only one beta-luteinizing hormone and no beta-chorionic gonadotropin gene in the rat. Endocrinology. 1984;115(1):385–391.

    CAS  PubMed  Google Scholar 

  16. Luo C, Zuniga J, Edison E, Palla S, Dong W, Parker-Thornburg J. Superovulation strategies for 6 commonly used mouse strains. J Am Assoc Lab Anim Sci. 2011;50(4):471–478.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kopp PM, Bate N, Hansen TM, et al. Studies on the morphology and spreading of human endothelial cells define key inter- and intramolecular interactions for talin1. Eur J Cell Biol. 2010;89(9):661–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol. 2008;10(9):1062–1068.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Slater M, Cooper M, Murphy CR. The cytoskeletal proteins alpha-actinin, Ezrin, and talin are De-expressed in endometriosis and endometrioid carcinoma compared with normal uterine epithelium. Appl Immunohistochem Mol Morphol. 2007;15(2):170–174.

    CAS  PubMed  Google Scholar 

  20. Kaneko Y, Lindsay LA, Murphy CR. Focal adhesions disassemble during early pregnancy in rat uterine epithelial cells. Reprod Fertil Dev. 2008;20(8):892–899.

    CAS  PubMed  Google Scholar 

  21. Zhang SM, Yu LL, Qu T, et al. The changes of cytoskeletal proteins induced by the fast effect of estrogen in mouse blastocysts and its roles in implantation. Reprod Sci. 2017:1933719117697126.

  22. Dey SK, Lim H, Das SK, et al. Molecular cues to implantation. Endocrine Rev. 2004;25(3):341–373.

    CAS  Google Scholar 

  23. Paria BC, Jones KL, Flanders KC, Dey SK. Localization and binding of transforming growth factor-beta isoforms in mouse preimplantation embryos and in delayed and activated blastocysts. Dev Biol. 1992;151(1):91–104.

    CAS  PubMed  Google Scholar 

  24. Paria BC, Huet-Hudson YM, Dey SK. Blastocyst’s state of activity determines the “window” of implantation in the receptive mouse uterus. Proc Natl Acad Sci U S A. 1993;90(21):10159–10162.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Evans J. Hyperglycosylated hCG: a unique human implantation and invasion factor. Am J Reprod Immunol. 2016;75(3):333–340.

    CAS  PubMed  Google Scholar 

  26. Schumacher A. Human chorionic gonadotropin as a pivotal endocrine immune regulator initiating and preserving fetal tolerance. Int J Mol Sci. 2017;18(10).

  27. Zhang M, Shi H, Segaloff DL, Van Voorhis BJ. Expression and localization of luteinizing hormone receptor in the female mouse reproductive tract. Biol Reprod. 2001;64(1):179–187.

    CAS  PubMed  Google Scholar 

  28. Han SW, Lei ZM, Rao CV. Treatment of human endometrial stromal cells with chorionic gonadotropin promotes their morphological and functional differentiation into decidua. Mol Cell Endocrinol. 1999;147(1-2):7–16.

    CAS  PubMed  Google Scholar 

  29. Berndt S, Perrier d’Hauterive S, Blacher S, et al. Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB J. 2006;20(14):2630–2632.

    CAS  PubMed  Google Scholar 

  30. Licht P, Russu V, Lehmeyer S, Wildt L. Molecular aspects of direct LH/hCG effects on human endometrium—lessons from intrauterine microdialysis in the human female in vivo. Reprod Biol. 2001;1(1):10–19.

    CAS  PubMed  Google Scholar 

  31. Critchley DR, Gingras AR. Talin at a glance. J Cell Sci. 2008;121(Pt 9):1345–1347.

    CAS  PubMed  Google Scholar 

  32. Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys. 2009;38:235–254.

    CAS  PubMed  Google Scholar 

  33. Cox D, Brennan M, Moran N. Integrins as therapeutic targets: lessons and opportunities. Nat Rev Drug Discov. 2010;9(10):804–820.

    CAS  PubMed  Google Scholar 

  34. Klapholz B, Brown NH. Talin — the master of integrin adhesions. J Cell Sci. 2017;130(15):2435–2446.

    CAS  PubMed  Google Scholar 

  35. Sakamoto S, McCann RO, Dhir R, Kyprianou N. Talin1 promotes tumor invasion and metastasis via focal adhesion signaling and anoikis resistance. Cancer Res. 2010;70(5):1885–1895.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Sun X, Dey SK. Entosis allows timely elimination of the luminal epithelial barrier for embryo implantation. Cell Reports. 2015;11(3):358–365.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Qin PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Qin, A. Regulation of Embryonic Signal on Talin1 in Mouse Endometrium. Reprod. Sci. 26, 1277–1286 (2019). https://doi.org/10.1177/1933719118815584

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118815584

Keywords

Navigation