Skip to main content

Advertisement

Log in

Issues related to targeted delivery of proteins and peptides

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

While modern genomic and proteomic technology enables rapid screening of novel proteins and peptides as potential drug candidates, design of delivery systems for these biologics remains challenging especially to achieve site-specific pharmacological actions. This article discusses the issues associated with targeted delivery of protein and peptide drugs at physiochemical, physiological, and intracellular levels with a special focus on cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duncan R. The dawning era of polymer therapeutics.Nat Rev Drug Discov. 2003;2:347–360.

    Article  CAS  PubMed  Google Scholar 

  2. Ruoslahti E. Specialization of tumour vasculature.Nat Rev Cancer. 2002;2:83–90.

    Article  PubMed  Google Scholar 

  3. Maeda H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy.Adv Drug Deliv Rev. 2001;46:169–185.

    Article  CAS  PubMed  Google Scholar 

  4. Schally AV. Luteinizing hormone-releasing hormone analogs: their impact on the control of tumorigenesis.Peptides. 1999;20:1247–1262.

    Article  CAS  PubMed  Google Scholar 

  5. Eklund JW, Kuzel TM. Denileukin diftitox: a concise clinical review.Expert Rev Anticancer Ther. 2005;5:33–38.

    Article  CAS  PubMed  Google Scholar 

  6. Stern M, Herrmann R. Overview of monoclonal antibodies in cancer therapy: present and promise.Crit Rev Oncol Hematol. 2005;54:11–29.

    Article  CAS  PubMed  Google Scholar 

  7. Hertler AA, Frankel AE. Immunotoxins: a clinical review of their use in the treatment of malignancies.J Clin Oncol. 1989;7:1932–1942.

    Article  CAS  PubMed  Google Scholar 

  8. Kreitman RJ, Wilson WH, White JD, et al. Phase I trial of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) in patients with hematologic malignancies.J Clin Oncol. 2000;18:1622–1636.

    Article  CAS  PubMed  Google Scholar 

  9. Kreitman RJ, Wilson WH, Bergeron K, et al. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia.N Engl J Med. 2001;345:241–247.

    Article  CAS  PubMed  Google Scholar 

  10. Sampson JH, Akabani G, Archer GE, et al. Progress report of a Phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors.J Neurooncol. 2003;65:27–35.

    Article  PubMed  Google Scholar 

  11. Weaver M, Laske DW. Transferrin receptor ligand-targeted toxin conjugate (Tf-CRM107) for therapy of malignant gliomas.J Neurooncol. 2003;65:3–13.

    Article  PubMed  Google Scholar 

  12. Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells. Contribution of translocation domain.J Biol Chem. 1993;268:24847–24854.

    CAS  PubMed  Google Scholar 

  13. Leamon CP, Low PS. Selective targeting of malignant cells with cytotoxin-folate conjugates.J Drug Target. 1994;2:101–112.

    Article  CAS  PubMed  Google Scholar 

  14. Atkinson SF, Bettinger T, Seymour LW, et al. Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells.J Biol Chem. 2001;276:27930–27935.

    Article  CAS  PubMed  Google Scholar 

  15. Frankel AE, Powell BL, Hall PD, et al. Phase I trial of a novel diphtheria toxin/granulocyte macrophage colony-stimulating factor fusion protein (DT388GMCSF) for refractory or relapsed acute myeloid leukemia.Clin Cancer Res. 2002;8:1004–1013.

    CAS  PubMed  Google Scholar 

  16. Bagshawe KD, Sharma SK, Begent RH. Antibody-directed enzyme prodrug therapy (ADEPT) for cancer.Expert Opin Biol Ther. 2004;4:1777–1789.

    Article  CAS  PubMed  Google Scholar 

  17. Francis RJ, Sharma SK, Springer C, et al. A phase I trial of antibody directed enzyme prodrug therapy (ADEPT) in patients with advanced colorectal carcinoma or other CEA producing tumours.Br J Cancer. 2002;87:600–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Graaf M, Boven E, Oosterhoff D, et al. A fully human anti-EpCAM scFv-beta-glucuronidase fusion protein for selective chemotherapy with a glucuronide prodrug.Br J Cancer. 2002;86:811–818.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Spooner RA, Friedlos F, Maycroft K, et al. A novel vascular endothelial growth factor-directed therapy that selectively activates cytotoxic prodrugs.Br J Cancer. 2003;88:1622–1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu JY, Lowe DA, Kennedy MD, Low PS. Folate-targeted enzyme prodrug cancer therapy utilizing penicillin-V amidase and a doxorubicin prodrug.J Drug Target. 1999;7:43–53.

    Article  CAS  PubMed  Google Scholar 

  21. Robinson MA, Charlton ST, Garnier P, et al. LEAPT: lectin-directed enzyme-activated prodrug therapy.Proc Natl Acad Sci USA. 2004;101:14527–14532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sondel PM, Hank JA, Gan J, et al. Preclinical and clinical development of immunocytokines.Curr Opin Investig Drugs. 2003;4:696–700.

    CAS  PubMed  Google Scholar 

  23. Connor JP, Felder M, Hank J, et al. Ex vivo evaluation of anti-EpCAM immunocytokine huKS-IL2 in ovarian cancer.J Immunother. 2004;27:211–219.

    Article  CAS  PubMed  Google Scholar 

  24. Gillies SD, Lan Y, Williams S, et al. An anti-CD20-IL-2 immunocytokine is highly efficacious in a SCID mouse model of established human B lymphoma.Blood. 2005;105:3972–3978.

    Article  CAS  PubMed  Google Scholar 

  25. Melani C, Figini M, Nicosia D, et al. Targeting of interleukin 2 to human ovarian carcinoma by fusion with a single-chain Fv of antifolate receptor antibody.Cancer Res. 1998;58:4146–4154.

    CAS  PubMed  Google Scholar 

  26. Metelitsa LS, Gillies SD, Super M, et al. Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FegammaRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis.Blood. 2002;99:4166–4173.

    Article  CAS  PubMed  Google Scholar 

  27. Lyu MA, Rosenblum MG. The immunocytokine scFv23/TNF sensitizes HER-2/neu-overexpressing SKBR-3 cells to tumor necrosis factor (TNF) via up-regulation of TNF receptor-1.Mol Cancer Ther. 2005;4:1205–1213.

    Article  CAS  PubMed  Google Scholar 

  28. Notter M, Willinger T, Erben U, Thiel E. Targeting of a B7-1 (CD80) immunoglobulin G fusion protein to acute myeloid leukemia blasts increases their costimulatory activity for autologous remission T cells.Blood. 2001;97:3138–3145.

    Article  CAS  PubMed  Google Scholar 

  29. Patten PA, Schellekens H. The immunogenicity of biopharmaceuticals. Lessons learned and consequences for protein drug development.Dev Biol (Basel). 2003;112:81–97.

    CAS  PubMed  Google Scholar 

  30. Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W. Structure-immunogenicity relationships of therapeutic proteins.Pharm Res. 2004;21:897–903.

    Article  CAS  PubMed  Google Scholar 

  31. Kolkman JA, Stemmer WP. Directed evolution of proteins by exon shuffling.Nat Biotechnol. 2001;19:423–428.

    Article  CAS  PubMed  Google Scholar 

  32. Schellekens H. Immunogenicity of therapeutic proteins: clinical implications and future prospects.Clin Ther. 2002;24:1720–1740. Discussion 1719.

    Article  CAS  PubMed  Google Scholar 

  33. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates.Adv Drug Deliv Rev. 2003;55:1261–1277.

    Article  CAS  PubMed  Google Scholar 

  34. Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability.Am J Physiol Renal Physiol. 2001;281:F579-F596.

    CAS  PubMed  Google Scholar 

  35. Nishida K, Mihara K, Takino T, et al. Hepatic disposition characteristics of electrically charged macromolecules in rat in vivo and in the perfused liver.Pharm Res. 1991;8:437–444.

    Article  CAS  PubMed  Google Scholar 

  36. Stockert RJ. The asialoglycoprotein receptor: relationships between structure, function, and expression.Physiol Rev. 1995;75:591–609.

    CAS  PubMed  Google Scholar 

  37. Landers KA, Burger MJ, Tebay MA, et al. Use of multiple biomarkers for a molecular diagnosis of prostate cancer.Int J Cancer. 2005;114:950–956.

    Article  CAS  PubMed  Google Scholar 

  38. Silver DA, Pellicer I, Fair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues.Clin Cancer Res. 1997;3:81–85.

    CAS  PubMed  Google Scholar 

  39. Luthi-Carter R, Barczak AK, Speno H, Coyle JT. Molecular characterization of human brain N-acetylated alpha-linked acidic dipeptidase (NAALADase).J Pharmacol Exp Ther. 1998;286:1020–1025.

    CAS  PubMed  Google Scholar 

  40. Lu Y, Low PS: Folate-mediated delivery of macromolecular anticancer therapeutic agents.Adv Drug Deliv Rev. 2002;54: 675–693.

    Article  CAS  PubMed  Google Scholar 

  41. Mastrobattista E, Crommelin DJ, Wilsehut J, Storm G. Targeted liposomes for delivery of protein-based drugs into the cytoplasm of tumor cells.J Liposome Res. 2002;12:57–65.

    Article  CAS  PubMed  Google Scholar 

  42. Becker A, Hessenius C, Lieha K, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.Nat Biotechnol. 2001;19:327–331.

    Article  CAS  PubMed  Google Scholar 

  43. Langer M, Beck-Sickinger AG. Peptides as carrier for tumor diagnosis and treatment.Curr Med Chem Anticancer Agents. 2001;1:71–93.

    Article  CAS  PubMed  Google Scholar 

  44. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.N Engl J Med. 2004;350:2335–2342.

    Article  CAS  PubMed  Google Scholar 

  45. Ma J, Pulfer S, Li S, et al. Pharmacodynamic-mediated reduction of temozolomide tumor concentrations by the angiogenesis inhibitor TNP-470.Cancer Res. 2001;61:5491–5498.

    CAS  PubMed  Google Scholar 

  46. Jain RK. Molecular regulation of vessel maturation.Nat Med. 2003;9:685–693.

    Article  CAS  PubMed  Google Scholar 

  47. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.Science. 2005;307:58–62.

    Article  CAS  PubMed  Google Scholar 

  48. Christiansen J, Rajasekaran AK. Biological impediments to monoclonal antibody-based cancer immunotherapy.Mol Cancer Ther. 2004;3:1493–1501.

    CAS  PubMed  Google Scholar 

  49. Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration.J Clin Invest. 2002;110:475–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Curnis F, Gasparri A, Sacchi A, et al. Coupling tumor necrosis factor-alpha with alphaV integrin ligands improves its antineoplastic activity.Cancer Res. 2004;64:565–571.

    Article  CAS  PubMed  Google Scholar 

  51. Fujimori K, Covell DG, Fletcher JE, Weinstein JN. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab′)2, and Fab in tumors.Cancer Res. 1989;49:5656–5663.

    CAS  PubMed  Google Scholar 

  52. Juweid M, Neumann R, Paik C, et al. Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier.Cancer Res. 1992;52:5144–5153.

    CAS  PubMed  Google Scholar 

  53. Adams GP, Schier R, McCall AM, et al. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules.Cancer Res. 2001;61:4750–4755.

    CAS  PubMed  Google Scholar 

  54. Langmuir VK, Mendonca HL, Woo DV. Comparisons between two monoclonal antibodies that bind to the same antigen but have differing affinities: uptake kinetics and 1251-antibody therapy efficacy in multicell spheroids.Cancer Res. 1992;52:4728–4734.

    CAS  PubMed  Google Scholar 

  55. Saga T, Neumann RD, Heya T, et al. Targeting cancer micrometastases with monoclonal antibodies: a binding-site barrier.Proc Natl Acad Sci USA. 1995:92:8999–9003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fracasso G, Colombatti M. Effect of therapeutic macromolecules in spheroids.Crit Rev Oncol Hematol. 2000;36:159–178.

    Article  CAS  PubMed  Google Scholar 

  57. Graff CP, Wittrup KD. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention.Cancer Res. 2003;63:1288–1296.

    CAS  PubMed  Google Scholar 

  58. Le Roy C, Wrana JL. Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling.Nat Rev Mol Cell Biol. 2005;6: 112–126.

    Article  PubMed  CAS  Google Scholar 

  59. Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis.Proc Natl Acad Sci USA. 1991;88:5572–5576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wellhoner HH, Jr, Neville DM, Jr, Srinivasachar K, Erdmann G. Uptake and concentration of bioactive macromolecules by K562 cells via the transferrin cycle utilizing an acid-labile transferrin conjugate.J Biol Chem. 1991;266:4309–4314.

    CAS  PubMed  Google Scholar 

  61. El-Sayed ME, Hoffman AS, Stayton PS. Smart polymeric carriers for enhanced intracellular delivery of therapentic macromolecules.Expert Opin Biol Ther. 2005;5:23–32.

    Article  CAS  PubMed  Google Scholar 

  62. Mastrobattista E, Koning GA, van Bloois L, et al. Functional characterization of an endosome-disruptive peptide and its application in cytosolic delivery of immunoliposome-entrapped proteins.J Biol Chem. 2002;277:27135–27143.

    Article  CAS  PubMed  Google Scholar 

  63. Kakudo T, Chaki S, Futaki S, et al. Transferrin-modified liposomes equipped with a pH-sensitive fusogenic peptide: an artificial viral-like delivery system.Biochemistry. 2004;43:5618–5628.

    Article  CAS  PubMed  Google Scholar 

  64. Berg K, Selbo PK, Prasmickaite L, et al. Photochemical internalization: a novel technology for delivery of macromolecules into cytosol.Cancer Res. 1999;59:1180–1183.

    CAS  PubMed  Google Scholar 

  65. Selbo PK, Sivam G, Fodstad O, et al. In vivo documentation of photochemical internalization, a novel approach to site specific cancer therapy.Int J Cancer. 2001;92:761–766.

    Article  CAS  PubMed  Google Scholar 

  66. Selbo PK, Sivam G, Fodstad O, et al. Photochemical internalisation increases the cytotoxic effect of the immunotoxin MOC31-gelonin.Int J Cancer. 2000;87:853–859.

    Article  CAS  PubMed  Google Scholar 

  67. Hogset A, Prasmickaite L, Selbo PK, et al. Photochemical internalisation in drug and gene delivery.Adv Drug Deliv Rev. 2004;56:95–115.

    Article  CAS  PubMed  Google Scholar 

  68. Brem S. Angiogenesis and cancer control: from concept to therapeutic trial.Cancer Control. 1999;6:436–458.

    CAS  PubMed  Google Scholar 

  69. Adessi C, Soto C. Converting a peptide into a drug: strategies to improve stability and bioavailability.Curr Med Chem. 2002;9:963–978.

    Article  CAS  PubMed  Google Scholar 

  70. Binetruy-Tournaire R, Demangel C, Malavaud B, et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis.EMBO J. 2000;19:1525–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reiher FK, Volpert OV, Jimenez B, et al. Inhibition of tumor growth by systemic treatment with thrombospondin-1 peptide mimetics.Int J Cancer. 2002;98:682–689.

    Article  CAS  PubMed  Google Scholar 

  72. Koivunen E, Wang B, Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins.Biotechnology (NY). 1995;13:265–270.

    Article  CAS  Google Scholar 

  73. Kumar CC, Malkowski M, Yin Z, et al. Inhibition of angiogenesis and tumor growth by SCH221153, a dual alpha(v)beta3 and alpha(v)beta5 integrin receptor antagonist.Cancer Res. 2001;61:2232–2238.

    CAS  PubMed  Google Scholar 

  74. Pasqualini R, Koivunen E, Kain R, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis.Cancer Res. 2000;60:722–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Koivunen E, Arap W, Valtanen H, et al. Tumor targeting with a selective gelatinase inhibitor.Nat Biotechnol. 1999;17:768–774.

    Article  CAS  PubMed  Google Scholar 

  76. Laakkonen P, Akerman ME, Biliran H, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells.Proc Natl Acad Sci USA. 2004;101:9381–9386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Froidevaux S, Eberle AN. Somatostatin analogs and radiopeptides in cancer therapy.Biopolymers. 2002;66:161–183.

    Article  CAS  PubMed  Google Scholar 

  78. Kanashiro CA, Schally AV, Groot K, et al. Inhibition of mutant p53 expression and growth of DMS-153 small cell lung carcinoma by antagonists of growth hormone-releasing hormone and bombesin.Proc Natl Acad Sci USA. 2003;100:15836–15841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stangelberger A, Schally AV, Varga JL, et al. Inhibitory effect of antagonists of bombesin and growth hormone-releasing hormone on orthotopic and intraosseous growth and invasiveness of PC-3 human prostate cancer in nude mice.Clin Cancer Res. 2005;11:49–57.

    CAS  PubMed  Google Scholar 

  80. Schally AV, Comaru-Schally AM, Plonowski A, et al. Peptide analogs in the therapy of prostate cancer.Prostate. 2000;45:158–166.

    Article  CAS  PubMed  Google Scholar 

  81. Colombo G, Curnis F, De Mori GM, et al. Structure-activity relationships of linear and cyclic peptides containing the NGR tumor-homing motif.J Biol Chem. 2002;277:47891–47897.

    Article  CAS  PubMed  Google Scholar 

  82. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.Science. 1998;279:377–380.

    Article  CAS  PubMed  Google Scholar 

  83. Chen Y, Xu X, Hong S, et al. RGD-Tachyplesin inhibits tumor growth.Cancer Res. 2001;61:2434–2438.

    CAS  PubMed  Google Scholar 

  84. Ellerby HM, Arap W, Ellerby LM, et al. Anti-cancer activity of targeted pro-apoptotic peptides.Nat Med. 1999;5:1032–1038.

    Article  CAS  PubMed  Google Scholar 

  85. de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002.Eur J Nucl Med Mol Imaging. 2003;30:463–469.

    Article  PubMed  CAS  Google Scholar 

  86. Scopinaro F, De Vincentis G, Corazziari E, et al. Detection of colon cancer with 99mTc-labeled bombesin derivative (99mTc-leu13-BN1).Cancer Biother Radiopharm. 2004;19:245–252.

    Article  CAS  PubMed  Google Scholar 

  87. Varvarigou A, Bouziotis P, Zikos C, et al. Gastrin-releasing peptide (GRP) analogues for cancer imaging.Cancer Biother Radiopharm. 2004;19:219–229.

    Article  CAS  PubMed  Google Scholar 

  88. Schally AV, Nagy A. New approaches to treatment of various cancers based on cytotoxic analogs of LHRH, somatostatin and bombesin.Life Sci. 2003;72:2305–2320.

    Article  CAS  PubMed  Google Scholar 

  89. Schally AV, Nagy A. Chemotherapy targeted to cancers through tumoral hormone receptors.Trends Endocrinol Metab. 2004;15:300–310.

    Article  CAS  PubMed  Google Scholar 

  90. Leuschner C, Enright FM, Gawronska-Kozak B, Hansel W. Human prostate cancer cells and xenografts are targeted and destroyed through luteinizing hormone releasing hormone receptors.Prostate. 2003;56:239–249.

    Article  CAS  PubMed  Google Scholar 

  91. Gawronska B, Leuschner C, Enright FM, Hansel W. Effects of a lytic peptide conjugated to beta HCG on ovarian cancer: studies in vitro and in vivo.Gynecol Oncol. 2002;85:45–52.

    Article  CAS  PubMed  Google Scholar 

  92. Curnis F, Sacchi A, Borgna L, et al. Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13).Nat Biotechnol. 2000;18:1185–1190.

    Article  CAS  PubMed  Google Scholar 

  93. Bauer W, Briner U, Doepfner W, et al. SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action.Life Sci. 1982;31:1133–1140.

    Article  CAS  PubMed  Google Scholar 

  94. Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy.Endocr Rev. 2003;24:389–427.

    Article  CAS  PubMed  Google Scholar 

  95. Hamel E. Interactions of antimitotic peptides and depsipeptides with tubulin.Biopolymers. 2002;66:142–160.

    Article  CAS  PubMed  Google Scholar 

  96. Edelman MJ, Gandara DR, Hansner P, et al. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer.Lung Cancer. 2003;39:197–199.

    Article  PubMed  Google Scholar 

  97. Marks RS, Graham DL, Sloan JA, et al. A phase II study of the dolastatin 15 analogue LU 103793 in the treatment of advanced non-small-cell lung cancer.Am J Clin Oncol. 2003;26:336–337.

    CAS  PubMed  Google Scholar 

  98. Law CL, Cerveny CG, Gordon KA, et al. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates.Clin Cancer Res. 2004;10:7842–7851.

    Article  CAS  PubMed  Google Scholar 

  99. Doronina SO, Toki BE, Torgov MY, et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy.Nat Biotechnol. 2003;21:778–784.

    Article  CAS  PubMed  Google Scholar 

  100. Francisco JA, Cerveny CG, Meyer DL, et al. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity.Blood. 2003;102:1458–1465.

    Article  CAS  PubMed  Google Scholar 

  101. Bhaskar V, Law DA, Ibsen E, et al. E-selectin up-regulation allows for targeted drug delivery in prostate cancer.Cancer Res. 2003;63:6387–6394.

    CAS  PubMed  Google Scholar 

  102. Afar DE, Bhaskar V, Ibsen E, et al. Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer.Mol Cancer Ther. 2004;3:921–932.

    CAS  PubMed  Google Scholar 

  103. Low PS, Antony AC. Folate receptor-targeted drugs for cancer and inflammatory diseases.Adv Drug Deliv Rev. 2004;56:1055–1058.

    Article  CAS  PubMed  Google Scholar 

  104. Paulos CM, Reddy JA, Leamon CP, et al. Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery.Mol Pharmacol. 2004;66: 1406–1414.

    Article  CAS  PubMed  Google Scholar 

  105. Lu Y, Sega E, Low PS. Folate receptor-targeted immunotherapy: induction of humoral and cellular immunity against hapten-decorated cancer cells.Int J Cancer. 2005;116:710–719.

    Article  CAS  PubMed  Google Scholar 

  106. Shinoda T, Takagi A, Maeda A, et al. In vivo fate of folate-BSA in non-tumor- and tumor-bearing mice.J Pharm Sci. 1998;87: 1521–1526.

    Article  CAS  PubMed  Google Scholar 

  107. Ward CM, Acheson N, Seymour LW. Folic acid targeting of protein conjugates into ascites tumour cells from ovarian cancer patients.J Drug Target. 2000;8:119–123.

    Article  CAS  PubMed  Google Scholar 

  108. Roy EJ, Gawlick U, Orr BA, Kranz DM. Folate-mediated targeting of T cells to tumors.Adv Drug Deliv Rev. 2004;56:1219–1231.

    Article  CAS  PubMed  Google Scholar 

  109. Kennedy MD, Jallad KN, Thompson DH, et al. Optical imaging of metastatic tumors using a folate-targeted fluorescent probe.J Biomed Opt. 2003;8:636–641.

    Article  PubMed  Google Scholar 

  110. Lu Y, Low PS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors.Cancer Immunol Immunother. 2002;51:153–162.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjuan Lu.

Additional information

Published: July 21, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Yang, J. & Sega, E. Issues related to targeted delivery of proteins and peptides. AAPS J 8, 55 (2006). https://doi.org/10.1208/aapsj080355

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/aapsj080355

Keywords

Navigation