Skip to main content
Log in

Preparation and characterization of chitosan and trimethyl-chitosanmodified poly-(ε-caprolactone) nanoparticles as DNA carriers

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this research was to prepare poly-(ε-caprolactone) (PCL) particles by an emulsion-diffusion-evaporation method using a blend of poly-(vinyl alcohol) and chitosan derivatives as stabilizers. The chitosan derivatives used were chitosan hydrochloride and trimethyl chitosans (TMC) with varying degrees of quaternization. Particle characteristics-size, zeta potential, surface morphology, cytotoxicity, and transfection efficiency-were investigated. The developed method yields PCL nanoparticles in the size range of 250 to 300 nm with a positive surface charge (2.5 to 6.8 mV). The cytotoxicity was found to be moderate and virtually independent of the stabilizers' concentration with the exception of the highly quaternized TMC (degree of substitution 66%) being significantly more toxic. In immobilization experiments with gel electrophoresis, it could be shown that these cationic nanoparticles (NP) form stable complexes with DNA at a NP:DNA ratio of 3:1. These nanoplexes showed a significantly higher transfection efficiency on COS-1 cells than naked DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crystal RG. The gene as drug.Nat Med. 1995;1:15–17.

    Article  CAS  Google Scholar 

  2. Florence AT, Sakthivel T, Toth I. Orral uptake and translocation of a polylysine dendrimer with a lipid surface.J Control Release. 2000;65:253–259.

    Article  CAS  Google Scholar 

  3. Ramaswamy C, Sakthivel T, Wilderspin AF, Florence AT. Dendriplexes and their characterization.Int J Pharm. 2003;254:17–21.

    Article  CAS  Google Scholar 

  4. Pouton CW, Lucas P, Thomas BJ, Uduehi AN, Milroy DA, Moss SH. Polycation-DNA complexes for gene delivery: a comparison of the biopharmaceutical properties of cationic polypeptides and cationic lipids.J Control Release. 1998;53:289–299.

    Article  CAS  Google Scholar 

  5. Ramsay E, Gumbleton M. Polylysine and polyornithine gene transfer complexes: a study of complex stability and cellular uptake as a basis for their differential in-vitro transfection efficiency.J Drug Target. 2002;10:1–9.

    Article  CAS  Google Scholar 

  6. Oupicky D, Konak C, Ulbrich K, Wolfert MA, Seymour LW. DNA delivery systems based on complexes of DNA with synthetic polycations and their copolymers.J Control Release. 2000;65:149–171.

    Article  CAS  Google Scholar 

  7. Wagner E, Plank C, Zatloukal K, Cotten M, Birnstiel ML. Influenza virus hemagglutinin HA-2 N-terminal fusogenic peptides augment gene transfer by transferrin-polylysine-DNA complexes: toward a synthetic virus-like gene-transfer vehicle.Proc Natl Acad Sci U S A. 1992;89:7934–7938.

    Article  CAS  Google Scholar 

  8. Fischer D, Bieber T, Li Y, Elsasser HP, Kissel T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity.Pharm Res. 1999;16:1273–1279.

    Article  CAS  Google Scholar 

  9. Kunath K, von Harpe A, Fischer D, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine.J Control Release. 2003;89:113–125.

    Article  CAS  Google Scholar 

  10. Smith JG, Wedeking T, Vernachio JH, Way H, Niven RW. Characterization and in vivo testing of a heterogeneous cationic lipid-DNA formulation.Pharm Res. 1998;15:1356–1363.

    Article  CAS  Google Scholar 

  11. Olbrich C, Bakowsky U, Lehr CM, Muller RH, Kneuer C. Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA.J Control Release. 2001;77:345–355.

    Article  CAS  Google Scholar 

  12. Oberle V, Bakowsky U, Zuhorn IS, Hoekstra D. Lipoplex formation under equilibrium conditions reveals a three step mechanism.Biophys J. 2000;79:1447–1454.

    Article  CAS  Google Scholar 

  13. Mahato RI, Kawabata K, Nomura T, Takakura Y, Hashida M. Physicochemical and pharmacokinetic characteristics of plasmid DNA/cationic liposome complexes.J Pharm Sci. 1995;84:1267–1271.

    Article  CAS  Google Scholar 

  14. Farhood H, Serbina N, Huang L. The role of dioleyl phosphatidylethanolamine in cationic liposome mediated gene transfer.Biochim Biophys Acta. 1995;1235:289–295.

    Article  Google Scholar 

  15. Sternberg B, Hong K, Zheng W, Papahadjopoulos D. Ultrastructural characterization of cationic liposome-DNA complexes showing enhanced stability in serum and high transfection activity in vivo.Biochim Biophys Acta. 1998;1375;23–35.

    Article  CAS  Google Scholar 

  16. Meyer O, Kirpotin D, Hong K, Sternberg B, Park JW, Woodle MC, Papahadjopoulos D. Cationic liposomes coated with polyethylene glycol as carriers for oligonucleotides.J Biol Chem. 1998;273:15621–15627.

    Article  CAS  Google Scholar 

  17. Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J. Efficient gene transfer into mammalian primary endocrine cells with lipopolyaminecoated DNA.Proc Natl Acad Sci U S A. 1989;86:6982–6986.

    Article  CAS  Google Scholar 

  18. Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D'Souza GG. Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes.Proc Natl Acad Sci U S A. 2003;100:1972–1977.

    Article  CAS  Google Scholar 

  19. Cui Z, Mumper RJ. Plasmid DNA-entrapped nanoparticles engineered from microemulsion precursors: in vitro and in vivo evaluation.Bioconjug Chem. 2002;13:1319–1327.

    Article  CAS  Google Scholar 

  20. Kneuer C, Sameti M, Haltner EG, Schiestel T, Schirra H, Schmidt H, Lehr CM. Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA.Int J Pharm. 2000;196:257–261.

    Article  CAS  Google Scholar 

  21. Kneuer C, Sameti M, Bakowsky U, et al. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro.Bioconjug Chem. 2000;11:926–932.

    Article  CAS  Google Scholar 

  22. Ravi Kumar MNV, Bakowsky U, Lehr C-M. Preparation and characterization of cationic PLGA nanospheres as DNA carriers.Biomaterials. 2004;25:1771–1777.

    Article  CAS  Google Scholar 

  23. Ravi Kumar MNV, Mohapatra SS, Kong X, Jena PK, Bakowsky ULehr C-M. Cationic poly(lactide-co-glycolide) nanoparticles as efficient in vivo gene transfection agents.J Nanosci Nanotechnol. 2004;4:990–994.

    Article  CAS  Google Scholar 

  24. Leong KW, Mao HQ, Truong Le VL, Roy K, Walsh SM, August JT. DNA-polycation nanospheres as non-viral gene delivery vehicles.J Control Release. 1998;53:183–193.

    Article  CAS  Google Scholar 

  25. Capan Y, Woo BH, Gebrekidan S, Ahmed S, DeLuca PP. Preparation and characterization of poly (D,L-lactide-co-glycolide) microspheres for controlled release of poly(L-lysine) complexed plasmid DNA.Pharm Res. 1999;16:509–513.

    Article  CAS  Google Scholar 

  26. Ravi Kumar MNV, Sameti M, Mohapatra SS, Kong X, Lockey RF, Bakowsky U, Lindenblatt G, Schmidt H, Lehr CM. Cationic silica nanoparticles as gene carriers: synthesis, characterization and transfection efficiency in vitro in vivo.J Nanosci Nanotechnol. 2004;4:876–881.

    Article  CAS  Google Scholar 

  27. Florea BI, Meaney C, Junginger HE, Borchard G. Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures.AAPS PharmSci. 2003;4:E12.

    Article  Google Scholar 

  28. Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.Adv Drug Deliv Rev. 2002;54:715–758.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus-Michael Lehr.

Additional information

Published: August 10, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, J., Ravi Kumar, M.N.V., Borchard, G. et al. Preparation and characterization of chitosan and trimethyl-chitosanmodified poly-(ε-caprolactone) nanoparticles as DNA carriers. AAPS PharmSciTech 6, 6 (2005). https://doi.org/10.1208/pt060106

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/pt060106

Keywords

Navigation