Skip to main content

Advertisement

Log in

Impact of Osmotically Active Excipients on Bioavailability and Bioequivalence of BCS Class III Drugs

  • Regulatory Note
  • Published:
The AAPS Journal Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12:413–20.

    Article  PubMed  CAS  Google Scholar 

  2. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. August 2000. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070246.pdf. Accessed 9 Aug 2012.

  3. Blume HH, Schug BS. The biopharmaceutics classification system (BCS): class III drugs—better candidates for BA/BE waiver? Eur J Pharm Sci. 1999;9:117–21.

    Article  PubMed  CAS  Google Scholar 

  4. Polli JE, Yu LX, Cook JA, Amidon GL, et al. Summary workshop report: bioequivalence, biopharmaceutics classification system and beyond. AAPS J. 2008;10:373–9.

    Article  PubMed  Google Scholar 

  5. Stavchansky S. Scientific perspectives on extending the provision for waivers of in vivo bioavailability and bioequivalence studies for drug products containing high solubility-low permeability drugs (BCS Class 3). AAPS J. 2008;10:300–5.

    Article  PubMed  CAS  Google Scholar 

  6. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res. 2002;19:921–5.

    Article  PubMed  CAS  Google Scholar 

  7. Rowe RC, Sheskey PJ, Cook WG, Fenton ME. Handbook of pharmaceutical excipients. 7th ed. London: Pharmaceutical Press; 2012.

    Google Scholar 

  8. Adkin DA, Davis SS, Sparrow RA, Huckle PD, Philips AJ, Wilding IR. The effects of pharmaceutical excipients on small intestinal transit. Br J Clin Pharmacol. 1995;39:381–7.

    Article  PubMed  CAS  Google Scholar 

  9. Adkin DA, Davis SS, Sparrow RA, Huckle PD, Phillips AJ, Wilding IR. The effect of different concentrations of mannitol in solution on small intestinal transit: implications for drug absorption. Pharm Res. 1995;12:393–6.

    Article  PubMed  CAS  Google Scholar 

  10. Adkin DA, Davis SS, Sparrow RA, Huckle PD, Wilding IR. The effect of mannitol on the oral bioavailability of cimetidine. J Pharm Sci. 1995;84:1405–9.

    Article  PubMed  CAS  Google Scholar 

  11. Constantinides PP. Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res. 1995;12:1561–72.

    Article  PubMed  CAS  Google Scholar 

  12. Nerurkar MM, Burton PS, Borchardt RT. The use of surfactants to enhance the permeability of peptides through Caco-2 cells by inhibition of an apically polarized efflux system. Pharm Res. 1996;13:528–34.

    Article  PubMed  CAS  Google Scholar 

  13. Yu L, Bridgers A, Polli J, Vickers A, Long S, Roy A, et al. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm Res. 1999;16:1812–7.

    Article  PubMed  CAS  Google Scholar 

  14. Rege BD, Yu LX, Hussain AS, Polli JE. Effect of common excipients on Caco-2 transport of low permeability drugs. J Pharm Sci. 2001;90:1776–86.

    Article  PubMed  CAS  Google Scholar 

  15. Basit AW, Podczeck F, Newton JM, Waddington WA, Ell PJ, Lacey LF. Influence of polyethylene glycol 400 on the gastrointestinal absorption of ranitidine. Pharm Res. 2002;19:1368–74.

    Article  PubMed  CAS  Google Scholar 

  16. Schulze JD, Waddington WA, Ell PJ, Parsons GE, Coffin MD, Basit AW. Concentration-dependent effects of polyethylene glycol 400 on gastrointestinal transit and drug absorption. Pharm Res. 2003;20:1984–8.

    Article  PubMed  CAS  Google Scholar 

  17. Villalobos AP, Gunturi SR, Heavner GA. Interaction of polysorbate 80 with erythropoietin: a case study in protein–surfactant interactions. Pharm Res. 2005;22:1186–94.

    Article  PubMed  CAS  Google Scholar 

  18. Hermeling S, Jiskoot W, Crommelin DJA, Schellekens H. Reaction to the paper: interaction of polysorbate 80 with erythropoietin: a case study in protein-surfactant interactions. Pharm Res. 2006;23:641–4.

    Article  PubMed  CAS  Google Scholar 

  19. Chen ML, Straughn AB, Sadrieh N, Meyer M, Faustino PJ, Ciavarella AB, et al. A modern view of excipient effects on bioequivalence: case study of sorbitol. Pharm Res. 2007;24:73–80.

    Article  PubMed  Google Scholar 

  20. Ashiru DA, Patel R, Basit AW. Polyethylene glycol 400 enhances the bioavailability of a BCS Class III drug (ranitidine) in male subjects but not females. Pharm Res. 2008;25:2327–33.

    Article  PubMed  CAS  Google Scholar 

  21. U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Division of Labeling and Program Support, Office of Generic Drugs. Inactive ingredient search for approved drug products. http://www.accessdata.fda.gov/scripts/cder/iig/index.cfm. Accessed 13 Aug 2012

  22. Menzies IS, Jenkins AP, Heduan E, Catt SD, Segal MB, Creamer B. The effect of poorly absorbed solute on intestinal absorption. Scand J Gastroenterol. 1990;25:1257–64.

    Article  PubMed  CAS  Google Scholar 

  23. Riley SA, Kim M, Sutcliffe F, Kapas M, Rowland M, Turnberg LA. Effects of a non-absorbable osmotic load on drug absorption in healthy volunteers. Br J Clin Pharmacol. 1992;34:40–6.

    Article  PubMed  CAS  Google Scholar 

  24. Jain NK, Rosenberg DB, Ulahannan MJ, Glasser MJ, Pitchumoni CS. Sorbitol intolerance in adults. Am J Gastroenterol. 1985;80:678–81.

    PubMed  CAS  Google Scholar 

  25. Niwa H, Hikichi N, Sakurai E, Ueda M, Fukush G. Effects of maltitol or mannitol on gastrointestinal absorption of drugs. Yakugaku Zasshi J Pharm Soc. 1980;100:1118–26.

    CAS  Google Scholar 

  26. Oku T, Nakamura S. Threshold for transitory diarrhea induced by ingestion of xylitol and lactitol in young male and female adults. J Nutr Sci Vitaminol. 2007;53:13–20.

    Article  PubMed  CAS  Google Scholar 

  27. Grammatte T, Desoky EE, Klotz U. Site-dependent small intestinal absorption of ranitidine. Eur J Clin Pharmacol. 1994;46:253–9.

    Article  Google Scholar 

  28. Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann J-M, et al. The effects of excipients on transporter-mediated absorption. Int J Pharm. 2010;393:17–31.

    Article  PubMed  CAS  Google Scholar 

  29. Yalkowsky SH. Techniques of solubilization of drugs. New York: Marcel Dekker; 1981.

    Google Scholar 

  30. Padoin C, Tod M, Brion N, Louchahi K, Gros VL, Petitjean O. Pharmacokinetics of amoxicillin co-administered with a saline-polyethylene glycol solution in healthy volunteers. Biopharm Drug Dispos. 1995;16:169–76.

    Article  PubMed  CAS  Google Scholar 

  31. Williams RL, Blume CD, Lin ET, Holford NHG, Benet LZ. Relative bioavailability of chlorthalidone in humans: adverse influence of polyethylene glycol. J Pharm Sci. 1982;71:533–5.

    Article  PubMed  CAS  Google Scholar 

  32. Ragueneau I, Poirier J-M, Radembino N, Sao AB, Funck-Brentano C, Jaillon P. Pharmacokinetic and pharmacodynamic drug interaction between digoxin and macrogol 4000, a laxative polymer, in healthy volunteers. Br J Clin Pharmacol. 1999;48:453–6.

    Article  PubMed  CAS  Google Scholar 

  33. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transporter/absorption/elimination interplay and development of a Biopharmaceutics Drug Disposition Classification System. Pharm Res. 2005;22:11–23.

    Article  PubMed  CAS  Google Scholar 

  34. Emami J. In vitro-in vivo correlation: from theory to application. J Pharm Pharm Sci. 2006;9:169–89.

    PubMed  CAS  Google Scholar 

  35. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  PubMed  CAS  Google Scholar 

  36. Shi JG, Zhang Y, Yeleswaram S. The relevance of assessment of intestinal P-gp inhibition using digoxin as an in vivo probe substrate. Nat Rev Drug Discov. 2011;10:75. author reply 75.

    Article  PubMed  CAS  Google Scholar 

  37. Shen Q, Lin Y, Handa T, Doi M, Sugie M, Wakayama K, et al. Modulation of intestinal P-glycoprotein function by polyethylene glycols and their derivatives by in vitro transport and in situ absorption studies. Int J Pharm. 2006;313:49–56.

    Article  PubMed  CAS  Google Scholar 

  38. Wang S-W, Monagle J, McNulty C, Putnam D, Chen H. Determination of P-glycoprotein inhibition by excipients and their combinations using an integrated high-throughput process. J Pharm Sci. 2004;93:2755–67.

    Article  PubMed  CAS  Google Scholar 

  39. Ashiru-Oredope DAI, Patel N, Forbes B, Patel R, Basit AW. The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers. Int J Pharm. 2011;409:164–8.

    Article  PubMed  CAS  Google Scholar 

  40. Evaluation of the health aspects of phosphates as food ingredients. Report PB-262 651, Life Sciences Research Office, Fed Am Soc Exp Biol. 1975.

  41. Koch KM, Parr AF, Tomlinson JJ, Sandefer EP, Digenis GA, Donn KH, et al. Effect of sodium acid pyrophosphate on ranitidine bioavailability and gastrointestinal transit time. Pharm Res. 1993;10:1027–30.

    Article  PubMed  CAS  Google Scholar 

  42. Title 21 Code of Federal Regulations (CFR) Part 320.22, Office of Federal Register, National Archives and Records Administration, US Government Printing Office, Washington, 2011.

  43. US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products—general considerations. March 2003. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070124.pdf. Accessed 16 Aug 2012.

  44. Hammel HT, Schlegel WM. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants. Cell Biochem Biophys. 2005;42:277–345.

    Article  PubMed  CAS  Google Scholar 

  45. Guyton AC, Hall JE. Textbook of medical pysiology. 9th ed. Philadelphia: Saunders; 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Ling Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, ML., Sadrieh, N. & Yu, L. Impact of Osmotically Active Excipients on Bioavailability and Bioequivalence of BCS Class III Drugs. AAPS J 15, 1043–1050 (2013). https://doi.org/10.1208/s12248-013-9509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9509-z

Key words

Navigation