Skip to main content

Advertisement

Log in

Imaging Techniques in the Diagnosis and Management of Ocular Tumors: Prospects and Challenges

  • Review Article
  • Theme: Integrating Microdialysis and Imaging Tools in Systems Pharmacology
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Different types of imaging modalities are used in the diagnosis of ocular cancer. Selection of an imaging modality is based on the features of a tumor as well as the inherent characteristics of the imaging technique. It is vital to select an appropriate imaging modality in diagnosis of ocular tumor with confidence. This review focuses on five most commonly used imaging modalities, i.e., positron emission tomography-computed tomography (PET/CT), single photon emission computed tomography (SPECT), optical coherence tomography (OCT), ultrasound (US), and magnetic resonance imaging (MRI). The principal of imaging modalities is briefly explained, along with their role in the diagnosis and management of the most common ocular tumors such as retinoblastoma and uveal melanoma. Further, the diagnostic features of ocular tumors corresponding to each imaging modality and possibilities of utilizing imaging techniques in the process of ocular drug development are included in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Chintagumpala M, Chevez-Barrios P, Paysse EA, Plon SE, Hurwitz R. Retinoblastoma: review of current management. Oncologist. 2007;12(10):1237–46.

    Article  PubMed  Google Scholar 

  3. Jovanovic P, Mihajlovic M, Djordjevic-Jocic J, Vlajkovic S, Cekic S, Stefanovic V. Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol. 2013;6(7):1230–44.

    PubMed Central  PubMed  Google Scholar 

  4. Singh AD, de Potter P, Fijal BA, Shields CL, Shields JA, Elston RC. Lifetime prevalence of uveal melanoma in white patients with oculo (dermal) melanocytosis. Ophthalmology. 1998;105(1):195–8.

    Article  CAS  PubMed  Google Scholar 

  5. Weis E, Shah CP, Lajous M, Shields JA, Shields CL. The association between host susceptibility factors and uveal melanoma: a meta-analysis. Arch Ophthalmol. 2006;124(1):54–60.

    Article  PubMed  Google Scholar 

  6. Vajdic CM, Kricker A, Giblin M, McKenzie J, Aitken J, Giles GG, et al. Sun exposure predicts risk of ocular melanoma in Australia. Int J Cancer. 2002;101(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  7. Vajdic CM, Kricker A, Giblin M, Mckenzie J, Aitken JF, Giles GG, et al. Artificial ultraviolet radiation and ocular melanoma in Australia. Int J Cancer. 2004;112(5):896–900.

    Article  CAS  PubMed  Google Scholar 

  8. Pandey AN. Retinoblastoma: an overview. Saudi J Ophthalmol. 2014;28(4):310–5.

    Article  PubMed  Google Scholar 

  9. Aerts I, Lumbroso-le Rouic L, Gauthier-Villars M, Brisse H, Doz F, Desjardins L. Retinoblastoma. Orphanet J Rare Dis. 2006;1(1):31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Balmer A, Munier F. Differential diagnosis of leukocoria and strabismus, first presenting signs of retinoblastoma. Clin Ophthalmol. 2007;1(4):431.

    PubMed Central  PubMed  Google Scholar 

  11. Shields CL, Shields JA. Retinoblastoma management: advances in enucleation, intravenous chemoreduction, and intra-arterial chemotherapy. Curr Opin Ophthalmol. 2010;21(3):203–212.

    Article  PubMed  Google Scholar 

  12. Ramaiya KJ, Harbour JW. Current management of uveal melanoma. Expert Rev Ophthalmol. 2007;2(6):939–46.

    Article  Google Scholar 

  13. Harbour JW. The genetics of uveal melanoma: an emerging framework for targeted therapy. Pigment Cell Melanoma Res. 2012;25(2):171–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Metser U, Goor O, Lerman H, Naparstek E, Even-Sapir E. PET-CT of extranodal lymphoma. Am J Roentgenol. 2004;182(6):1579–86.

    Article  Google Scholar 

  15. Spraul CW, Lang GE, Lang GK. Value of positron emission tomography in the diagnosis of malignant ocular tumors. Ophthalmologica. 2001;215(3):163–8.

    Article  CAS  PubMed  Google Scholar 

  16. Lucignani G, Paganelli G, Modorati G, Pieralli S, Rizzo G, Magnani P, et al. MRI, antibody-guided scintigraphy, and glucose metabolism in uveal melanoma. J Comput Assist Tomogr. 1992;16(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  17. Modorati G, et al. Glucose metabolism and pathological findings in uveal melanoma: preliminary results. Nucl Med Commun. 1996;17(12):1052–6.

    Article  CAS  PubMed  Google Scholar 

  18. Patel P, Finger PT. Whole-body 18F FDG positron emission tomography/computed tomography evaluation of patients with uveal metastasis. Am J Ophthalmol. 2012;153(4):661–668.

    Article  PubMed  Google Scholar 

  19. Hsieh J. Computed tomography: principles, design, artifacts, and recent advances. Bellingham: SPIE; 2009.

    Google Scholar 

  20. Reddy S, Kurli M, Tena LB, Finger PT. PET/CT imaging: detection of choroidal melanoma. Br J Ophthalmol. 2005;89(10):1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuo T, Ogino Y, Ichimura K, Tanaka T, Kaji M. Clinicopathological correlation for the role of fluorodeoxyglucose positron emission tomography computed tomography in detection of choroidal malignant melanoma. Int J Clin Oncol. 2014;19(2):230–9.

    Article  PubMed  Google Scholar 

  22. Sharma RS, Shah PK, Narendran V. Poor uptake of fluorodeoxyglucose in positron emission tomography-computed tomography scan for intraocular choroidal melanoma in Asian Indian eyes. World J Nuclear Med. 2016;15(1):53–5.

    Google Scholar 

  23. Finger PT, Chin K, Iacob CE. 18-fluorine-labelled 2-deoxy-2-fluoro-D-glucose positron emission tomography/computed tomography standardised uptake values: a non-invasive biomarker for the risk of metastasis from choroidal melanoma. Br J Ophthalmol. 2006;90(10):1263–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee CS, Cho A, Lee KS, Lee SC. Association of high metabolic activity measured by positron emission tomography imaging with poor prognosis of choroidal melanoma. Br J Ophthalmol. 2011;95(11):1588–91.

    Article  PubMed  Google Scholar 

  25. Calcagni ML, Mattoli MV, Blasi MA, Petrone G, Sammarco MG, Indovina L, et al. A prospective analysis of 18 F-FDG PET/CT in patients with uveal melanoma: comparison between metabolic rate of glucose (MRglu) and standardized uptake value (SUV) and correlations with histopathological features. Eur J Nucl Med Mol Imaging. 2013;40(11):1682–91.

    Article  CAS  PubMed  Google Scholar 

  26. Lee CS, Lee SC, Lee K, Kwon HJ, Yi JH, Cho A. Regression of uveal melanoma after ru-106 brachytherapy and thermotherapy based on metabolic activity measured by positron emission tomography/computed tomography. Retina. 2014;34(1):182–7.

    Article  CAS  PubMed  Google Scholar 

  27. McCannel TA, et al. Association of positive dual-modality positron emission tomography/computed tomography imaging of primary choroidal melanoma with chromosome 3 loss and tumor size. Retina. 2010;30(1):146–51.

    Article  PubMed  Google Scholar 

  28. Freton A, et al. Initial PET/CT staging for choroidal melanoma: AJCC correlation and second nonocular primaries in 333 patients. European journal of ophthalmology. 2012;22(2):236–43.

    Article  PubMed  Google Scholar 

  29. Huang B, Law MW-M, Khong P-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251(1):166–74.

    Article  PubMed  Google Scholar 

  30. Aerts I, Pacquement H, Doz F, Mosseri V, Desjardins L, Sastre X, et al. Outcome of second malignancies after retinoblastoma: a retrospective analysis of 25 patients treated at the Institut curie. Eur J Cancer. 2004;40(10):1522–9.

    Article  PubMed  Google Scholar 

  31. Müller C, Schibli R. Single photon emission computed tomography tracer. Recent Results Cancer Res. 2013;187:65–105.

  32. Holly TA, Abbott BG, al-Mallah M, Calnon DA, Cohen MC, DiFilippo F, et al. Single photon-emission computed tomography. J Nucl Cardiol. 2010;17(5):941–73.

    Article  PubMed  Google Scholar 

  33. Goto H. Clinical efficacy of 123 I-IMP SPECT for the diagnosis of malignant uveal melanoma. Int J Clin Oncol. 2004;9(2):74–8.

    Article  PubMed  Google Scholar 

  34. Kato K, Kubota T, Ikeda M, Tadokoro M, Abe S, Nakano S, et al. Low efficacy of 18F-FDG PET for detection of uveal malignant melanoma compared with 123I-IMP SPECT. J Nucl Med. 2006;47(3):404–9.

    CAS  PubMed  Google Scholar 

  35. Abe K, Sasaki M, Koga H, Kaneko K, Sawamoto H, Yoshikawa H, et al. Clinical role of 123I-IMP SPECT for the differential diagnosis of ocular malignant melanoma: a time-course analysis. Nucl Med Commun. 2007;28(7):567–73.

    Article  PubMed  Google Scholar 

  36. Yoshimura M, Kanesaka N, Saito K, Koizumi K, Tokuuye K, Goto H. Diagnosis of uveal malignant melanoma by a new semiquantitative assessment of N-isopropyl-p-[123 I]-iodoamphetamine. Jpn J Ophthalmol. 2011;55(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas BJ, Galor A, Nanji AA, el Sayyad F, Wang J, Dubovy SR, et al. Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia. Ocul Surf. 2014;12(1):46–58.

    Article  PubMed  Google Scholar 

  38. Simpson T, Fonn D. Optical coherence tomography of the anterior segment. Ocul Surf. 2008;6(3):117–27.

    Article  PubMed  Google Scholar 

  39. Oellers P, Karp CL. Management of pigmented conjunctival lesions. Ocul Surf. 2012;10(4):251–63.

    Article  PubMed  Google Scholar 

  40. Shah SU, et al. Enhanced depth imaging optical coherence tomography of choroidal nevus in 104 cases. Ophthalmology. 2012;119(5):1066–72.

    Article  PubMed  Google Scholar 

  41. Bianciotto C, et al. Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases. Ophthalmology. 2011;118(7):1297–1302.

  42. Pavlin CJ, et al. Anterior segment optical coherence tomography and ultrasound biomicroscopy in the imaging of anterior segment tumors. Am J Ophthalmol. 2009;147(2):214–219. e2.

    Article  PubMed  Google Scholar 

  43. Nanji AA, Sayyad FE, Galor A, Dubovy S, Karp CL. High-resolution optical coherence tomography as an adjunctive tool in the diagnosis of corneal and conjunctival pathology. Ocul Surf. 2015;13(3):226–35.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Vajzovic LM, Karp CL, Haft P, Shousha MA, Dubovy SR, Hurmeric V, et al. Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations. Ophthalmology. 2011;118(7):1291–6.

    PubMed  Google Scholar 

  45. Hurmeric V, Yoo SH, Galor A, et al. Atypical presentation of Salzmann nodular degeneration diagnosed with ultra-high-resolution optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2011; 42:e122–e125.

  46. Kieval JZ, Karp CL, Shousha MA, Galor A, Hoffman RA, Dubovy SR, et al. Ultra-high resolution optical coherence tomography for differentiation of ocular surface squamous neoplasia and pterygia. Ophthalmology. 2012;119(3):481–6.

    Article  PubMed  Google Scholar 

  47. Atallah M, Joag M, Galor A, Amescua G, Nanji A, Wang J, et al. Role of high resolution optical coherence tomography in diagnosing ocular surface squamous neoplasia with coexisting ocular surface diseases. Ocul Surf. 2017;15(4):688–95.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91(4):551–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Feygin T, Leahey A-M. Retinoblastoma: Advanced Imaging, Clinical Approach. J Pediatr Neuroradiol. 2015;4(04):082–096.

  50. Siahmed K, Berges O, Desjardins L, Lumbroso L, Brasseur G. Anterior segment tumor imaging: advantages of ultrasound (10, 20 and 50 MHz) and optical coherence tomography. J Fr Ophtalmol. 2004;27(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  51. Roth DB, Scott IU, Murray TG, Kaiser PK, Feuer WJ, Hughes JR, et al. Echography of retinoblastoma: histopathologic correlation and serial evaluation after globe-conserving radiotherapy or chemotherapy. J Pediatr Ophthalmol Strabismus. 2001;38(3):136–43.

    CAS  PubMed  Google Scholar 

  52. Paquette LB, et al. In utero detection of retinoblastoma with fetal magnetic resonance and ultrasound: initial experience. AJP Rep. 2012;2(1):55.

  53. Toi A, Sutherland J, Gallie B, Gardiner J, Sermer M. Evaluation of the fetus at risk for retinoblastoma: what is the role of prenatal ultrasound? Ultrasound Med Biol. 2003;29(5):S137.

    Article  Google Scholar 

  54. Stathopoulos C, Say EAT, Shields CL. Prenatal ultrasonographic detection and prenatal (prior to birth) management of hereditary retinoblastoma. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):861.

    Article  PubMed  Google Scholar 

  55. SPECT, https://www.mdsave.com/procedures/brain-spect/d785ffc9 . Web Link, 6/27/2018.

  56. scan, C.o.O.p., https://www.photonics.com/a36339/Is_OCT_Worth_It. Web Link, 6/27/2018.

  57. Ultrasound, C.o., https://www.mdsave.com/procedures/ultrasound/d781f5ca. Web Link, 6/27/2018.

  58. MRI, C.o., https://www.medicinenet.com/ct_scan_vs_mri/article.htm#why_would_you_need_to_have_an_mri_after_having_a_ct_scan. Web Link, 6/27/2018.

  59. Stathopoulos C, Say EAT, Shields CL. Prenatal ultrasonographic detection and prenatal (prior to birth) management of hereditary retinoblastoma. Graefes Arch Clin Exp Ophthalmol. 2017.

  60. Schueler AO, Hosten N, Bechrakis NE, Lemke AJ, Foerster P, Felix R, et al. High resolution magnetic resonance imaging of retinoblastoma. Br J Ophthalmol. 2003;87(3):330–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Go JL, Zee CS. Unique CT imaging advantages. Hemorrhage and calcification. Neuroimaging Clin N Am. 1998;8(3):541–58.

    CAS  PubMed  Google Scholar 

  62. Lemke A Jr, et al. Retinoblastoma—MR appearance using a surface coil in comparison with histopathological results. Eur Radiol. 2007;17(1):49–60.

    Article  PubMed  Google Scholar 

  63. Galluzzi P, Hadjistilianou T, Cerase A, de Francesco S, Toti P, Venturi C. Is CT still useful in the study protocol of retinoblastoma? Am J Neuroradiol. 2009;30(9):1760–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simon EM, McCaffery S, Rowley HA, Fischbein NJ, Shimikawa A, O'Brien JM. High-resolution 3D T2-weighted fast spin echo: new applications in the orbit. Neuroradiology. 2003;45(7):489–92.

    Article  PubMed  Google Scholar 

  65. !!! INVALID CITATION !!!.

  66. Hosten N, Bornfeld N, Lemke AJ, Sander B, Wassmuth R, Felix R. MR of the eye with retrobulbar anesthesia. Am J Neuroradiol. 1997;18(9):1788–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bert RJ, Patz S, Ossiani M, Caruthers SD, Jara H, Krejza J, et al. High-resolution MR imaging of the human eye 2005. Acad Radiol. 2006;13(3):368–78.

    Article  PubMed  Google Scholar 

  68. Patz S, Bert RJ, Frederick E, Freddo TF. T1 and T2 measurements of the fine structures of the in vivo and enucleated human eye. J Magn Reson Imaging. 2007;26(3):510–8.

    Article  PubMed  Google Scholar 

  69. Berkowitz BA, McDonald C, Ito Y, Tofts PS, Latif Z, Gross J. Measuring the human retinal oxygenation response to a hyperoxic challenge using MRI: eliminating blinking artifacts and demonstrating proof of concept. Magn Reson Med. 2001;46(2):412–6.

    Article  CAS  PubMed  Google Scholar 

  70. Staffieri SE, McGillivray G, Elder JE, Bristowe A, Cole S, McKenzie JD, et al. Managing fetuses at high risk of retinoblastoma: lesion detection on screening MRI. Prenat Diagn. 2015;35(2):174–8.

    Article  PubMed  Google Scholar 

  71. Brisse HJ, Guesmi M, Aerts I, Sastre-Garau X, Savignoni A, Lumbroso-le Rouic L, et al. Relevance of CT and MRI in retinoblastoma for the diagnosis of postlaminar invasion with normal-size optic nerve: a retrospective study of 150 patients with histological comparison. Pediatr Radiol. 2007;37(7):649–56.

    Article  PubMed  Google Scholar 

  72. Jacquemin C, Karcioglu ZA. Detection of optic nerve involvement in retinoblastoma with enhanced computed tomography. Eye. 1998;12(2):179–83.

    Article  PubMed  Google Scholar 

  73. De Graaf P, et al. Contrast-enhancement of the anterior eye segment in patients with retinoblastoma: correlation between clinical, MR imaging, and histopathologic findings. Am J Neuroradiol. 2010;31(2):237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  74. de Graaf P, et al. Guidelines for imaging retinoblastoma: imaging principles and MRI standardization. Pediatr Radiol. 2012;42(1):2–14.

    Article  PubMed  Google Scholar 

  75. Adam G, Brab M, Bohndorf K, Günther RW. Gadolinium-DTPA-enhanced MRI of intraocular tumors. Magn Reson Imaging. 1990;8(6):683–9.

    Article  CAS  PubMed  Google Scholar 

  76. Peyster RG, Augsburger JJ, Shields JA, Hershey BL, Eagle R Jr, Haskin ME. Intraocular tumors: evaluation with MR imaging. Radiology. 1988;168(3):773–9.

    Article  CAS  PubMed  Google Scholar 

  77. Lemke AJ, Hosten N, Bornfeld N, Bechrakis N, Frenzel D, Richter M, et al. Appearance of choroidal melanoma on high resolution MRI using 1.5 T with a dedicated surface coil in 200 consecutive patients. Rofo. 1998;169(5):471–8.

    Article  CAS  PubMed  Google Scholar 

  78. Lemke A Jr, et al. Intraocular metastases: differential diagnosis from uveal melanomas with high-resolution MRI using a surface coil. Eur Radiol. 2001;11(12):2593–601.

    Article  CAS  PubMed  Google Scholar 

  79. Aghaian E, et al. 3D MRI-based tumor delineation of ocular melanoma and its comparison with conventional techniques. Med Phys. 2005;32(11):3355–62.

    Article  PubMed  Google Scholar 

  80. Stroszczynski C, Hosten N, Bornfeld N, Wiegel T, Schueler A, Foerster P, et al. Choroidal hemangioma: MR findings and differentiation from uveal melanoma. Am J Neuroradiol. 1998;19(8):1441–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shapey J, Sabin HI, Danesh-Meyer HV, Kaye AH. Diagnosis and management of optic nerve sheath meningiomas. J Clin Neurosci. 2013;20(8):1045–56.

    Article  CAS  PubMed  Google Scholar 

  82. Thompson BG, Brown RD Jr, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ES Jr, et al. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(8):2368–400.

    Article  PubMed  Google Scholar 

  83. Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain. 2000;123(2):205–21.

    Article  PubMed  Google Scholar 

  84. Langner SN, et al. 7.1 T MRI to assess the anterior segment of the eye. Invest Ophthalmol Vis Sci. 2010;51(12):6575–81.

    Article  PubMed  Google Scholar 

  85. Lindner T, Langner S, Falke K, Walter U, Krüger PC, Pohlmann A, et al. Anatomic and pathological characterization of choroidal melanoma using multimodal imaging: what is practical, what is needed? Melanoma Res. 2015;25(3):252–8.

    Article  PubMed  Google Scholar 

  86. Temple RJ. A regulatory authority's opinion about surrogate endpoints. In: Clinical measurement in drug evaluation. 1995. p. 1–22.

  87. Pien HH, Fischman AJ, Thrall JH, Sorensen AG. Using imaging biomarkers to accelerate drug development and clinical trials. Drug Discov Today. 2005;10(4):259–66.

    Article  CAS  PubMed  Google Scholar 

  88. Bergström M, Grahnén A, Långström B. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol. 2003;59(5–6):357–66.

    Article  PubMed  Google Scholar 

  89. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med. 2004;10(2):145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Thomas AL, et al. Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. In: Seminars in oncology. Elsevier; 2003.

  91. Bach PH, Thanh NTK. Renal papillary necrosis—40 years on. Toxicol Pathol. 1998;26(1):73–91.

    Article  CAS  PubMed  Google Scholar 

  92. Seiderer J, Zech CJ, Reinisch W, Lukas M, Diebold J, Wrba F, et al. A multicenter assessment of liver toxicity by MRI and biopsy in IBD patients on 6-thioguanine. J Hepatol. 2005;43(2):303–9.

    Article  CAS  PubMed  Google Scholar 

  93. Fischman AJ, Alpert NM, Livni E, Ray S, Sinclair I, Callahan RJ, et al. Pharmacokinetics of 18F-labeled fluconazole in healthy human subjects by positron emission tomography. Antimicrob Agents Chemother. 1993;37(6):1270–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yankeelov TE, Mankoff DA, Schwartz LH, Lieberman FS, Buatti JM, Mountz JM, et al. Quantitative imaging in cancer clinical trials. Clin Cancer Res. 2016;22(2):284–90.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li SK, Lizak MJ, Jeong EK. MRI in ocular drug delivery. NMR Biomed. 2008;21(9):941–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kim SH, Csaky KG, Wang NS, Lutz RJ. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm Res. 2008;25(3):512–20.

    Article  CAS  PubMed  Google Scholar 

  97. Azeredo FJ, Dalla Costa T, Derendorf H. Role of microdialysis in pharmacokinetics and pharmacodynamics: current status and future directions. Clin Pharmacokinet. 2014;53(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  98. MacHa S, Mitra AK. Ocular pharmacokinetics of cephalosporins using microdialysis. J Ocul Pharmacol Ther. 2001;17(5):485–98.

    Article  CAS  PubMed  Google Scholar 

  99. Boddu SHS, Gunda S, Earla R, Mitra AK. Ocular microdialysis: a continuous sampling technique to study pharmacokinetics and pharmacodynamics in the eye. Bioanalysis. 2010;2(3):487–507.

    Article  PubMed  Google Scholar 

  100. Gratieri T, Gelfuso GM, de Freitas O, Rocha EM, Lopez RFV. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel. Eur J Pharm Biopharm. 2011;79(2):320–7.

    Article  CAS  PubMed  Google Scholar 

  101. Fernandez-Ferreiro A, et al. Preclinical PET study of Intravitreal injections. Invest Ophthalmol Vis Sci. 2017;58(7):2843–51.

    CAS  PubMed  Google Scholar 

  102. Subrizi A, Toropainen E, Ramsay E, Airaksinen AJ, Kaarniranta K, Urtti A. Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharm Res. 2015;32(1):211–21.

    Article  CAS  PubMed  Google Scholar 

  103. Rimpelä A-K, Schmitt M, Latonen S, Hagström M, Antopolsky M, Manzanares JA, et al. Drug distribution to retinal pigment epithelium: studies on melanin binding, cellular kinetics, and single photon emission computed tomography/computed tomography imaging. Mol Pharm. 2016;13(9):2977–86.

    Article  PubMed  Google Scholar 

  104. Li SK, Jeong E-K, Hastings MS. Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis. Invest Ophthalmol Vis Sci. 2004;45(4):1224–31.

    Article  PubMed  Google Scholar 

  105. Berkowitz B, Sato Y, Wilson CA, de Juan E. Blood-retinal barrier breakdown investigated by real-time magnetic resonance imaging after gadolinium-diethylenetriaminepentaacetic acid injection. Invest Ophthalmol Vis Sci. 1991;32(11):2854–60.

    CAS  PubMed  Google Scholar 

  106. Arrindell EL, Wu JC, Wolf MD, Nanda S, Han DP, Wong EC, et al. High-resolution magnetic resonance imaging evaluation of blood-retinal barrier integrity following transscleral diode laser treatment. Arch Ophthalmol. 1995;113(1):96–102.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai H. S. Boddu.

Additional information

Guest Editors: Robert E. Stratford, Nimita Dave, and Richard F. Bergstrom

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neupane, R., Gaudana, R. & Boddu, S.H.S. Imaging Techniques in the Diagnosis and Management of Ocular Tumors: Prospects and Challenges. AAPS J 20, 97 (2018). https://doi.org/10.1208/s12248-018-0259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-018-0259-9

KEY WORDS

Navigation