Skip to main content
Log in

The Production, Quality Control, and Characterization of ZED8, a CD8-Specific 89Zr-Labeled Immuno-PET Clinical Imaging Agent

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Immuno-PET is a molecular imaging technique utilizing positron emission tomography (PET) to measure the biodistribution of an antibody species labeled with a radioactive isotope. When applied as a clinical imaging technique, an immuno-PET imaging agent must be manufactured with quality standards appropriate for regulatory approval. This paper describes methods relevant to the chemistry, manufacturing, and controls component of an immuno-PET regulatory filing, such as an investigational new drug application. Namely, the production, quality control, and characterization of the immuno-PET clinical imaging agent, ZED8, an 89Zr-labeled CD8-specific monovalent antibody as well as its desferrioxamine-conjugated precursor, CED8, is described and evaluated. PET imaging data in a human CD8-expressing tumor murine model is presented as a proof of concept that the imaging agent exhibits target specificity and comparable biodistribution across a range of desferrioxamine conjugate loads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van Dongen GAMS, Visser GWM, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12(12):1379–89.

    Article  Google Scholar 

  2. Laetitia LE, Williams SP, Terwisscha van Scheltinga AGT, Lub-de Hooge MN, Schröder CP, Gietema JA, et al. Antibody positron emission tomography imaging in anticancer drug development. J Clin Oncol. 2015; 33(13):1491–1504

  3. Henkart PA, Williams MS, Nakajima H. Degranulating cytotoxic lymphocytes inflict multiple damage pathways on target cells. Pathways for Cytolysis. Berlin: Springer Berlin Heidelberg; 1995. p. 75–93.

    Google Scholar 

  4. Liu CC, Walsh CM, Young JD. Perforin: structure and function. Immunol Today. 1995;16(4):194–201.

    Article  Google Scholar 

  5. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568.

  6. Gooden MJM, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 105(1):93–103.

  7. Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2009;29:1093.

    Article  Google Scholar 

  8. Mayer AT, Gambhir SS. The immuno-imaging toolbox. J Nucl Med.

  9. Wei W, Jiang D, Ehlerding EB, Luo Q, Cai W. Noninvasive PET imaging of T cells. Trends Cancer. 4(5):359–73.

  10. Rashidian M, Ingram JR, Dougan M, Dongre A, Whang KA, LeGall C, et al. Predicting the response to CTLA-4 blockade by longitudinal noninvasive monitoring of CD8 T cells. The Journal of Experimental Medicine.

  11. Tavaré R, Escuin-Ordinas H, Mok S, McCracken MN, Zettlitz KA, Salazar FB, et al. An effective immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 76(1):73–82.

  12. Tavaré R, McCracken MN, Zettlitz KA, Knowles SM, Salazar FB, Olafsen T, et al. Engineered antibody fragments for immuno-PET imaging of endogenous CD8(+) T cells in vivo. Proc Natl Acad Sci U S A. 111(3):1108–13.

  13. Olafsen T, Torgov M, Zhang GG, Romero J, Zampila C, Marchioni F, et al. Pet imaging of cytotoxic human T cells using an 89Zr-labeled anti-CD8 minibody. J Immuno Ther Cancer. 3(2):P388.

  14. Pandit-Taskar N, Postow M, Hellmann M, Harding J, Barker C, O'Donoghue J, et al. First-in-human imaging with 89Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. Journal of Nuclear Medicine. 2019.

  15. ImaginAb I. 89Zr-Df-IAB22M2C PET/CT in patients with selected solid malignancies or Hodgkin's lymphoma (NCT03107663). 2017.

  16. University Medical Center Groningen. ImmunoPET imaging with ZED88082A in patients before and during treatment with 1) MPDL3280A or 2) PD-1 antibody plus or minus ipilimumab (NCT04029181). 2019.

  17. Chen YMC, Chiang EY-C, Grogan JL, Williams S-P, Albert ML. Anti-CD8 antibodies and uses thereof. WO/2019/033043, 2018.

  18. Morikawa S, Tatsumi E, Baba M, Harada T, Yasuhira K. Two E-rosette-forming lymphoid cell lines. Int J Cancer. 1978;21(2):166–70.

    Article  CAS  Google Scholar 

  19. Pegoraro L, Fierro MT, Lusso P, Giovinazzo B, Lanino E, Giovarelli M, et al. A novel leukemia T-cell line (PF-382) with phenotypic and functional features of suppressor lymphocytes. J Natl Cancer Inst. 1985;75(2):285–90.

    CAS  PubMed  Google Scholar 

  20. Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA. 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44(8):1271–81.

    CAS  PubMed  Google Scholar 

  21. Medley CD, Gruenhagen J, Yehl P, Chetwyn NP. Detection of residual biocides in antibody drug conjugates for immunoPET imaging. Anal Methods. 6(17):6635–40.

  22. Nieto A, Roehl H, Brown H, Nikoloff J, Adler M, Mahler H-C. Evaluation of container closure system integrity for frozen storage drug products. PDA J Pharm Sci Technol. 2016;70(2):120–33.

    Article  CAS  Google Scholar 

  23. Ponto JA. Self-sealing capacity of vial stoppers after multiple needle punctures. JAm Pharm Assoc. 2013;53(1):58–60.

    Article  Google Scholar 

  24. Scherer TM, Leung S, Owyang L, Shire SJ. Issues and challenges of subvisible and submicron particulate analysis in protein solutions. AAPS J. 14(2):236–43.

  25. Jinyi Q, Leahy RM. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans Med Imaging. 2000;19(5):493–506.

    Article  Google Scholar 

  26. Kirsch LE, Nguyen L, Gerth R. Pharmaceutical container/closure integrity III: validation of the helium leak rate method for rigid pharmaceutical containers. PDA J Pharm Sci Technol. 1997;51(5):203–7.

    CAS  PubMed  Google Scholar 

  27. Pharmacopeia US. Package integrity evaluation - sterile products <1207> USP-NF 2016.

  28. Holland JP, Sheh Y, Lewis JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol. 2009;36(7):729–39.

    Article  CAS  Google Scholar 

  29. Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: Influence of aggregation. J Immunotoxicol. 2014;11(2):99–109.

    Article  CAS  Google Scholar 

  30. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA. Determination of the immunoreactive function of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods. 1984;72(1):77–89.

    Article  CAS  Google Scholar 

  31. Zalutsky MR, Zhao XG, Alston KL, Bigner D. High-level production of α-particle-emitting 211At and preparation of 211At-labeled antibodies for clinical use. J Nucl Med. 2001;42(10):1508–15.

    CAS  PubMed  Google Scholar 

  32. Sharma SK, Lyashchenko SK, Park HA, Pillarsetty N, Roux Y, Wu J, et al. A rapid bead-based radioligand binding assay for the determination of target-binding fraction and quality control of radiopharmaceuticals. Nucl Med Biol. 2019;71:32–8.

    Article  CAS  Google Scholar 

  33. Rafidi H, Mandikian, D., Stainton, S., Chen, Y., Kamath, A., Prabhu, Boswell C.A. Kidney filtration cut-off revisited. Clinical Pharmacology & Therepeutics. 2019;105(Supplement S1).

  34. Heskamp S, Raavé R, Boerman O, Rijpkema M, Goncalves V, Denat F. 89Zr-Immuno-positron emission tomography in oncology: state-of-the-art 89Zr radiochemistry. Bioconjug Chem. 2017;28(9):2211–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mark Dennis, Yvonne Chen, Diego Ellerman, Phil Hass, Maciej Paluch (Genentech Research and Early Development) – production of anti-CD8 monovalent antibody, anti-gD monovalent antibody, and human CD8-Fc fusion protein for pre-clinical evaluation; Pat Mckay (Genentech Pharmaceutical Technical Development) - production of human CD8-Fc fusion protein; Bruce Kabakoff, Devon Roshan Eisner (Genentech Pharmaceutical Technical Development) –guidance on the formulation buffer, stability, and container closure integrity studies.

Funding

All authors are paid employees of either Genentech Inc. or InviCRO, LLC and all work was funded by Genentech Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herman Gill.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, H., Seipert, R., Carroll, V.M. et al. The Production, Quality Control, and Characterization of ZED8, a CD8-Specific 89Zr-Labeled Immuno-PET Clinical Imaging Agent. AAPS J 22, 22 (2020). https://doi.org/10.1208/s12248-019-0392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-019-0392-0

KEY WORDS

Navigation