Skip to main content

Advertisement

Log in

CKS1B Overexpression Implicates Clinical Aggressiveness of Hepatocellular Carcinomas but Not p27Kip1 Protein Turnover: an Independent Prognosticator with Potential p27Kip1-Independent Oncogenic Attributes?

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Through data mining the Stanford Microarray Database, the CKS1B transcript was found to be frequently upregulated in hepatocellular carcinomas (HCCs) with low alpha-fetal protein (AFP) expression. Together with SKP2, CKS1B is known to implicate p27Kip1 protein turnover promoting cell-cycle progression.

Methods

CKS1B, p27Kip1, and SKP2 were immunostained in 75 HCCs and correlated with clinicopathological features, local recurrence-free survival (LRFS), and overall survival (OS). Silencing of CKS1B and SKP2 with interference short-hairpin RNA (shRNA) was performed in SK-Hep1 and Hep-3B cell lines.

Results

Immunohistochemically, increased CKS1B and SKP2, and attenuated p27Kip1 were all associated with tumor multiplicity (P < 0.05) and increasing American Joint Committee on Cancer (AJCC) stage (P < 0.05). Overexpression of CKS1B significantly correlated with advanced Okuda stages (P = 0.048) and SKP2 overexpression (P = 0.047). Neither CKS1B nor SKP2 was inversely related to p27Kip1, which was reinforced by no alteration in p27Kip1 abundance in HCC-derived cells with CKS1B or SKP2 silencing. Both CKS1B overexpression (P = 0.0011 and P = 0.0017) and p27Kip1 attenuation (P = 0.0079 and P = 0.0085) were predictive of OS and LRFS, respectively, while SKP2 overexpression was associated with worse OS alone (P = 0.0043). Combined assessment of CKS1B and p27Kip1 was able to robustly distinguish three prognostically different groups (P < 0.0001). In multivariate comparison, CKS1B overexpression represented the strongest independent adverse prognosticator [OS, P = 0.0235, hazard ratio (HR): 4.193; LRFS, P = 0.0204, HR: 4.262], followed by p27Kip1 attenuation (OS, P = 0.0320, HR: 2.553; LRFS, P = 0.0262, HR: 2.533).

Conclusions

CKS1B protein overexpression in HCCs is implicated in clinical aggressiveness but not in p27Kip1 turnover, implying presence of p27Kip1-independent oncogenic attributes. The combined assessment of CKS1B and p27Kip1 immunoexpressions effectively risk-stratifies HCCs with different prognoses, which may aid in the management of this deadly malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen X, Cheung ST, So S, et al. Gene expression patterns in human liver cancers. Mol Biol Cell. 2002;13:1929–39.

    Article  Google Scholar 

  2. Egan EA, Solomon MJ. Cyclin-stimulated binding of Cks proteins to cyclin-dependent kinases. Mol Cell Biol. 1998;18:3659–67.

    CAS  PubMed  Google Scholar 

  3. Ganoth D, Bornstein G, Ko TK, et al. The cell-cycle regulatory protein Cks1 is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol. 2001;3:321–4.

    Article  CAS  PubMed  Google Scholar 

  4. Urbanowicz-Kachnowicz I, Baghdassarian N, Nakache C, et al. ckshs expression is linked to cell proliferation in normal and malignant human lymphoid cells. Int J Cancer. 1999;82:98–104.

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Sun H, Drake J, et al. From mice to humans: identification of commonly deregulated genes in mammary cancer via comparative SAGE studies. Cancer Res. 2004;64:7748–55.

    Article  CAS  PubMed  Google Scholar 

  6. Spruck C, Strohmaier H, Watson M, et al. A CDK-independent function of mammalian Cks1: targeting of SCF(Skp2) to the CDK inhibitor p27Kip1. Mol Cell. 2001;7:639–50.

    Article  CAS  PubMed  Google Scholar 

  7. Bloom J, Pagano M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol. 2003;13:41–7.

    Article  CAS  PubMed  Google Scholar 

  8. Ito Y, Matsuura N, Sakon M, et al. Expression and prognostic roles of the G1-S modulators in hepatocellular carcinoma: p27 independently predicts the recurrence. Hepatology. 1999;30:90–9.

    Article  CAS  PubMed  Google Scholar 

  9. Armengol C, Boix L, Bachs O, et al. p27(Kip1) is an independent predictor of recurrence after surgical resection in patients with small hepatocellular carcinoma. J Hepatol. 2003;38:591–7.

    Article  CAS  PubMed  Google Scholar 

  10. Fiorentino M, Altimari A, D’Errico A, et al. Acquired expression of p27 is a favorable prognostic indicator in patients with hepatocellular carcinoma. Clin Cancer Res. 2000;6:3966–72.

    CAS  PubMed  Google Scholar 

  11. Sun D, Ren H, Oertel M, Sellers RS, Zhu L. Loss of p27Kip1 enhances tumor progression n chronic hepatocyte injury-induced liver tumorigenesis with widely ranging effects on Cdk2 or Cdc2 activation. Carcinogenesis. 2007;28:1859–66.

    Article  CAS  PubMed  Google Scholar 

  12. Tannapfel A, Grund D, Katalinic A, et al. Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma. Int J Cancer. 2000;89:350–5.

    Article  CAS  PubMed  Google Scholar 

  13. Sitry D, Seeliger MA, Ko TK, et al. Three different binding sites of Cks1 are required for p27-ubiquitin ligation. J Biol Chem. 2002;277:42233–40.

    Article  CAS  PubMed  Google Scholar 

  14. Ouellet V, Guyot MC, Le Page C, et al. Tissue array analysis of expression microarray candidates identifies markers associated with tumor grade and outcome in serous epithelial ovarian cancer. Int J Cancer. 2006;119:599–607.

    Article  CAS  PubMed  Google Scholar 

  15. Zhan F, Colla S, Wu X, et al. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood. 2007;109:4995–5001.

    Article  CAS  PubMed  Google Scholar 

  16. Chiappetta G, De Marco C, Quintiero A, et al. Overexpression of the S-phase kinase-associated protein 2 in thyroid cancer. Endocr Relat Cancer. 2007;14:405–20.

    Article  CAS  PubMed  Google Scholar 

  17. Hershko DD, Shapira M. Prognostic role of p27Kip1 deregulation in colorectal cancer. Cancer. 2006;107:668–75.

    Article  CAS  PubMed  Google Scholar 

  18. Kawakami K, Enokida H, Tachiwada T, Nishiyama K, Seki N, Nakagawa M. Increased SKP2 and CKS1 gene expression contributes to the progression of human urothelial carcinoma. J Urol. 2007;178:301–7.

    Article  CAS  PubMed  Google Scholar 

  19. Kitajima S, Kudo Y, Ogawa I, et al. Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am J Pathol. 2004;165:2147–55.

    CAS  PubMed  Google Scholar 

  20. Masuda TA, Inoue H, Nishida K, et al. Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin Cancer Res. 2003;9:5693–8.

    CAS  PubMed  Google Scholar 

  21. Shapira M, Ben-Izhak O, Bishara B, et al. Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer. 2004;100:1615–21.

    Article  CAS  PubMed  Google Scholar 

  22. Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I, Hershko DD. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 2005;103:1336–46.

    Article  CAS  PubMed  Google Scholar 

  23. Slotky M, Shapira M, Ben-Izhak O, et al. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res. 2005;7:R737–44.

    Article  CAS  PubMed  Google Scholar 

  24. Tsai YS, Chang HC, Chuang LY, Hung WC. RNA silencing of Cks1 induced G2/M arrest and apoptosis in human lung cancer cells. IUBMB Life. 2005;57:583–9.

    Article  CAS  PubMed  Google Scholar 

  25. Takanishi DM, Jr., Severino R, Wong LL. The Cancer of the Liver Italian Program (CLIP) score: validation of a new prognostic system for hepatocellular carcinoma. Hawaii Med J. 2007;66:209–12.

    PubMed  Google Scholar 

  26. Lee CL HK, Chen YL, Shiue YL. Identification of candidate genes in congenital ventricular septal defects with HSA22q11 loss of heterozygosity. Rev Esp Cardiol. 2009;62:263–72.

    Article  Google Scholar 

  27. Shiue YL, Chen LR, Chen CF, et al. Identification of transcripts related to high egg production in the chicken hypothalamus and pituitary gland. Theriogenology. 2006;66:1274–83.

    Article  CAS  PubMed  Google Scholar 

  28. Gollub J, Ball CA, Binkley G, et al. The Stanford Microarray Database: data access and quality assessment tools. Nucleic Acids Res. 2003;31:94–6.

    Article  CAS  PubMed  Google Scholar 

  29. Voiculescu M, Winkler RE, Moscovici M, Neuman MG. Chemotherapies and targeted therapies in advanced hepatocellular carcinoma: from laboratory to clinic. J Gastrointestin Liver Dis. 2008;17:315–22.

    PubMed  Google Scholar 

  30. Tang H, Tang XY, Liu M,Li X. Targeting alpha-fetoprotein represses the proliferation of hepatoma cells via regulation of the cell cycle. Clin Chim Acta. 2008;394:81–8.

    Article  CAS  PubMed  Google Scholar 

  31. Gurtsevitch VE. Human oncogenic viruses: hepatitis B and hepatitis C viruses and their role in hepatocarcinogenesis. Biochemistry (Mosc). 2008;73:504–13.

    Article  CAS  Google Scholar 

  32. Zhou Q, He Q,Liang LJ. Expression of p27, cyclin E and cyclin A in hepatocellular carcinoma and its clinical significance. World J Gastroenterol. 2003;9:2450–4.

    CAS  PubMed  Google Scholar 

  33. Huang HY, Kang HY, Li CF, et al. Skp2 overexpression is highly representative of intrinsic biological aggressiveness and independently associated with poor prognosis in primary localized myxofibrosarcomas. Clin Cancer Res. 2006;12:487–98.

    Article  CAS  PubMed  Google Scholar 

  34. Inui N, Kitagawa K, Miwa S, et al. High expression of Cks1 in human non-small cell lung carcinomas. Biochem Biophys Res Commun. 2003;303:978–84.

    Article  CAS  PubMed  Google Scholar 

  35. Vervoorts J, Luscher B. Post-translational regulation of the tumor suppressor p27(KIP1). Cell Mol Life Sci. 2008;65:3255–64.

    Article  CAS  PubMed  Google Scholar 

  36. Bhatt KV, Hu R, Spofford LS, Aplin AE. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene. 2007;26:1056–66.

    Article  CAS  PubMed  Google Scholar 

  37. Kouvaraki MA, Korapati AL, Rassidakis GZ, et al. Potential role of Jun activation domain-binding protein 1 as a negative regulator of p27kip1 in pancreatic adenocarcinoma. Cancer Res. 2006;66:8581–9.

    Article  CAS  PubMed  Google Scholar 

  38. Westbrook L, Manuvakhova M, Kern FG, Estes NR II, Ramanathan HN, Thottassery JV. Cks1 regulates cdk1 expression: a novel role during mitotic entry in breast cancer cells. Cancer Res. 2007;67:11393–401.

    Article  CAS  PubMed  Google Scholar 

  39. Hu R, Aplin AE. Skp2 regulates G2/M progression in a p53-dependent manner. Mol Biol Cell. 2008;19:4602–10.

    Article  CAS  PubMed  Google Scholar 

  40. Calvisi DF, Pinna F, Meloni F, et al. Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma. Cancer Res. 2008;68:4192–200.

    Article  CAS  PubMed  Google Scholar 

  41. Wang IC, Chen YJ, Hughes D, et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase. Mol Cell Biol. 2005;25:10875–94.

    Article  CAS  PubMed  Google Scholar 

  42. Wang W, Ungermannova D, Chen L, Liu X. Molecular and biochemical characterization of the Skp2-Cks1 binding interface. J Biol Chem. 2004;279:51362–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Special thanks are extended to Dr. WC Hung (Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan) for detailed discussion, and for financial support provided by National Science Council (NSC96-2320-B-110-007) to Y.-L. Shiue and partial support from Yuan’s General Hospital (RG06-003) to C.-W. Huang and Chi-Mei Medical Center (CMFHR 9747) to C.-F. Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Ling Shiue PhD.

Additional information

Ching-Wen Huang, Ching-Yih Lin, Hsuan-Ying Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CW., Lin, CY., Huang, HY. et al. CKS1B Overexpression Implicates Clinical Aggressiveness of Hepatocellular Carcinomas but Not p27Kip1 Protein Turnover: an Independent Prognosticator with Potential p27Kip1-Independent Oncogenic Attributes?. Ann Surg Oncol 17, 907–922 (2010). https://doi.org/10.1245/s10434-009-0779-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0779-8

Keywords

Navigation