Skip to main content
Log in

Strategy for the development of a matched set of transport-competent, angiotensin receptor-deficient proximal tubule cell lines

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In the proximal convoluted tubule (PCT) angiotensin II (Ang II) modulates fluid and electrolyte transport through at least two pharmacologically distinct receptor subtypes: AT1 and AT2. Development of cell lines that lack these receptors are potentially useful models to probe the complex cellular details of Ang II regulation. To this end, angiotensin receptor-deficient mice were bred with an Immortomouse®, which harbors a thermolabile SV40 large-T antigen (Tag). S1 PCT segments from kidneys of F2 mice were microdissected, placed in culture, and maintained under conditions that enhanced cell growth, i.e., promoted Tag expression and thermostability. Three different types of angiotensin receptor-deficient cell lines, (AT1A [−/−], Tag [+/−]), (AT1B[−/−], Tag [+/−]),and (AT1B[−/−], Tag [+/+]), as well as wild type cell lines were generated. Screening and characterization, which were conducted under culture conditions that promoted cellular differentiation, included: measurements of transepithelial transport, such as basal monolayer short-circuit current (Isc; −3 to 3 μA/cm2), basal monolayer conductance (G, 2 to 10 mS/cm2), Na +in3 -phosphate cotransport (ΔIsc of 2 to 3 μA/cm2 at 1 mM), and Na +in3 -succinate contransport (ΔIsc of 1 to 9 μA/cm2 at 2 mM). Morphology of cell monolayers showed an extensive brush border, well-defined tight junctions, and primary cilia. Receptor functionality was assessed by Ang II-stimulated \-arrestin 2 translocation and showed an Ang II-mediated response in wild type but not (AT1A [−/ −], AT1B [−/−]) cells. Cell line were amplified, yielding a virtually unlimited supply of highly differentiated, transportcompetent, angiotensin receptor-deficient PCT cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular biology of the cell: cell junctions, cell adhesion, and the extracellular matrix, 4th ed. New York: Garland Science (Taylor & Francis Group); 2002:1065–1125.

    Google Scholar 

  • Allen, C. B.; Schneider, K.; White, C. W. Limitations to oxygen diffusion and equilibration in in vitro cell exposure sustems in hyperoxia and hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol. 281:L1021-L1027; 2001.

    PubMed  CAS  Google Scholar 

  • Barak, L. S.; Ferguson, S. S. G.; Zhang, J.; Caron, M. G. A \-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J. Biol. Chem. 272:27497–27500; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Baum, M.; Quigley, R. Maturation of rat proximal tubule chloride permeability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R1659-R1664; 2005.

    PubMed  CAS  Google Scholar 

  • de Casparo, M.; Catt, K. J.; Inagami, T.; Wright, J. W.; Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52:415–472; 2000.

    Google Scholar 

  • Dickman, K. G.; Mandel, L. J. Glycolytic and oxidative metabolism in primary renal proximal tubule cultures. Am. J. Physiol. Cell Physiol. 257:C333-C340; 1989.

    CAS  Google Scholar 

  • Dinh, D. T.; Frauman, A. G.; Johnston, C. I.; Fabian, M. E. Angiotensin receptors: distribution, signalling and function. Clin. Sci. (Lond.) 100:481–492; 2001.

    CAS  Google Scholar 

  • du Cheyron, D.; Chalumeau, C.; Defontaine, N.; Kleein, C.; Kellerman, O.; Paillard, M.; Poggioli, J. Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int. 64:939–949; 2003.

    Article  PubMed  Google Scholar 

  • Erkan, E.; Devarajan, P.; Schwartz, G. J. Apoptotic response to albumin overload: proximal vs. distal/collecting tubule cells. Am. J. Nephrol. 25:121–131; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson, S. S. G.; Caron, M. G. Green fluorescent protein-tagged \-arrestin translocation as a measure of G protein-coupled receptor activation. In: Smrcka, A. V., ed. methods in molecular biology: G protein signaling methods and protocols. Totowa, NJ, Humana Press; 2004; 121–126.

    Google Scholar 

  • Frei, N.; Weissenberger, J.; Beck-Sickinger, A. G.; Höfliger, M.; Weis, J.; Imboden, H., Immunocytochemical localization of angiotensin II receptor subtypes and angiotensin II with monolonal antibodies in the rat adrenal gland. Regul. Pept. 101:149–155; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gross, E.; Hawkins, K.; Abuladze, N.; Puskhin, A.; Cotton, C. U.; Hopfer, U.; Kurtz, I. The stoichiometry of the electronic sodium bicarbonate cotransporter NBCI is cell-type dependent. J. Physiol. 531:597–603; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hopfer, U.; Jacobberger, J. W.; Gruenert, D. C.; Eckert, R. L.; Jat, P. S.; Whitsett, J. A. Immortalization of epithelial cells. Am. J. Physiol. 270 (Cell Physiol. 39):C1-C11; 1996.

    PubMed  CAS  Google Scholar 

  • Ichiki, T.; Labosky, P. A.; Shiota, C., et al. Effects on blood pressure and exploratory behavior of mice lacking angiotensin II type-2 receptor. Nature 377:748–750, 1995.

    Article  PubMed  CAS  Google Scholar 

  • Inagami, T. Molecular biology and signaling of angiotensin receptors: an overview. J. Am. Soc. Nephrol. Suppl. 11:S2-S7; 1999.

    Google Scholar 

  • Ito, M.; Oliverio, M. I.; Mannon, P. J.; Best, C. F.; Maeda, N.; Smithies, O.; Coffman, T. M. Regalation of blood pressure by the type 1A angiotensin II receptor gene. Proc. Natl. Acad. Sci. USA 92:3521–3525; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Jat, P. S.; Noble, M. D.; Ataliotis, P.; Tanaka, Y.; Yannoutsos, N.; Larsen, L.; Kioussis, D. Direct derivation of conditionally immortal cell lines from an H-2K b-tsA58 transgenic mouse. Proc. Natl. Acad. Sci. USA 88:5096–5100; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, R. J.; Woost, P. G.; Hopfer, U. Membrane trafficking of angiotensin receptor type-1 and mechanochemical signal transduction in proximal tubule cells. Hypertension 44:352–359; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kriz, W.; Knissling, B. Structural organization of the mammalian kidney. In: Seldin, D. W.; Giebisch, G., ed. The kidney: physiology and pathophysiology, Vol. 1, 2nd ed. New York: Raven Press; 1992: 707–777.

    Google Scholar 

  • Lefkowitz, R. J.; Shenoy, S. K., Transduction of receptor signals by \-arrestins. Science 308:512–517; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Lin, F.; Cordes, K.; Li, L.; Hood, L.; Couser, W. G.; Shankland, S. J.; Igarashi, P. Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-repefusion injury in mice. J. Am. Soc. Nephrol. 14:1188–1199; 2003.

    Article  PubMed  Google Scholar 

  • Lutz, M. D.; Cardinal, J.; Burg, M. B. Electrical resistance of renal proximal tubule perfused in vitro. Am. J. Physiol. 225:729–734; 1973.

    PubMed  CAS  Google Scholar 

  • Marshansky, V.; Bourgoin, S.; Londono, I.; Bendayan, M.; Vinay, P.. Identification of ADP-ribosylation factor-6 in brush-border membrane and early endosomes of human kidney proximal tubules. Electrophoresis 18:538–547; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Morais, C.; Westhuyzen, J.; Pat, B.; Gobe, G.; Healy, H. High ambient glucose is effect neutral on cell death and proliferation in human proximal tubule epithelial cells. Am. J. Physiol. Renal Physiol. 289:F401-F409; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Muller-Berger, S.; Nesterov, VV; Fromter, E. Partial recovery of in vivo function by improved incubation conditions of isolated renal proximal tubule. II. Change of Na−HCO3 cotransport stoichiometry and of response to acetazolamide. Pffugers Arch. 434:383–391; 1997.

    Article  CAS  Google Scholar 

  • Murer, H.; Hernando, N.; Forster, I.; Biber, J. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol. Rev. 80:1373–1409; 2000.

    PubMed  CAS  Google Scholar 

  • National Institutes of Health. Public health service policy on humane care and use of laboratory animals. National Institutes of Health: Office of Laboratory Animal Welfarel. Bethesda, MD; 2002.

    Google Scholar 

  • Navar, L. G.; Imig, J. D.; Zou, L.; Wang, C. T. Intrarenal production of angiotensin II Semin. Nephrol. 17:412–422; 1997.

    PubMed  CAS  Google Scholar 

  • Nowak, G.; Schnellmann, R. G. Improved culture conditions stimulate gluconeogenesis in primary cultures of renal proximal tubule cells. Am. J. Physiol. 268(4) Pt 1):C1053-C1061; 1995.

    PubMed  CAS  Google Scholar 

  • Oliverio, M. I.; Coffman, T. M. Angiotensin II receptor physiology using gene targeting. News Physio. Sci. 15:171–175; 2000.

    CAS  Google Scholar 

  • Oliverio, M. I.; Kim, H.-S.; Ito, M., et al. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc. Natl. Acad. Sci. USA 95:15496–15501; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Orosz, D. E.; Woost, P.G.; Kolb, R. J., et al. Growth, immortalization, and differention potential of normal adult human proximal tubule cells. In Vitro Cell. Dev. Biol. 40A:22–34; 2004.

    Article  Google Scholar 

  • Pajor, A. M. Molecular properties of sodium/dicarboxylate cotransporters, J. Membrane Biol. 175:1–8; 2000.

    Article  CAS  Google Scholar 

  • Panchapakesan, U.; Sumual, S.; Pollock, C. A.; Chen, X. PPARgamma agonists exert antifibrotic effects in renal tubular cells exposed to high glucose. Am. J. Physiol. Renal Physiol. 289:F1153-F1158; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Praetorius, H. A.; Frokiaer, J.; Neilsen, S.; Spring, K. R. Bending the primary cilium opens Ca2+-sensitive intermediate-conductance K+ channels in MDCK cells. J. Membr. Biol. 191:193–200; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Praetorius, H. A.; Spring, K. R. Bending of the MDCK primary cilium increases intracellular calcium. J Membr.. Biol. 184:71–79; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Quan, A.; Baum, M. Regulation of proximal tubule transport by endogenously produced angiotensin II. Nephron 84:103–110; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Romero, M. F.; Douglas, J. G.; Eckert, R. L.; Hopfer, U.; Jacobberger, J. W. Development and characterization of rabbit proximal tubular epithelial cell lines. Kidney Int. 42:1130–1144; 1992.

    PubMed  CAS  Google Scholar 

  • Scherberich, J. E.; Gauhl, C.; Mondorf, W. Biochemical, immunological and ultrastructural studies on brush-border membranes of human kidney. Curr. Probl. Clin. Biochem. 8:85–95; 1977.

    PubMed  CAS  Google Scholar 

  • Shenoy, S. K.; Lefkowitz, R. J. Receptor-specific ubiquination of \-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J. Biol. Chem. 280:15315–15324; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Todd, J. H.; Sens, M. A.; Hazen-Martin, D. J.; Bylander, J. E.; Smyth, B. J.; Sens, D. A. Variation in the electrical properties of cultured human proximal tubule cells. In Vitro Cell. Dev. Biol. 29A:371–378; 1993.

    CAS  Google Scholar 

  • Touyz, R. M.; Berry, C. Recent advances in angiotensin II signaling. Braz. J. Med. Biol. Res. 35:1001–1015; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, M.; Fandrey, J.; Jelkmann, W. Microelectrode measurements of pericellular P02 in erythropoietin-producing huma hepatoma cell cultures. Am. J. Physiol. Cell Physiol. 265:C1266-C1270; 1993.

    CAS  Google Scholar 

  • Woost, P. G.; Orosz, D. E.; Jin, W.; Frisa, P. S.; Jacobberger, J. W.; Douglas, J. G.; Hopfer, U. Immortalization and characterization of proximal tubule cells derived from kidneys of spontaneously hypertensive and normotensive rats. Kidney Int. 50:125–134; 1996.

    PubMed  CAS  Google Scholar 

  • Xu, J.; Li, X. X.; Albrecht, F. E.; Hopfer, U.; Carey, R. M.; Jose, P. A. Dopamine receptor, G and Na+-H+ exchanger interactions in the kidney in hypertension. Hypertension 36:395–399; 2000.

    PubMed  CAS  Google Scholar 

  • Yeager, T. R.; Reddel, R. R. Constructing immortalized human cell lines. Curr. Opin. Biotech. 10:465–469; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yu, P.; Asico, L. D.; Eisner, G. M.; Hopfer, U.; Felder, R. A.; Jose, P. A. Renal protein phosphatase 2A activity and spontaneous hypertension in rats. Hypertension 36:1053–1058; 2000.

    PubMed  CAS  Google Scholar 

  • Zeng, C.; Asico, L. D.; Wang, X.; Hopfer, U.; Eisner, G. M.; Felder, R. A.; Jose, P. A. Angiotensin II regulation of AT1 and D3 dopamine receptors in renal proximal tubule cells of SHR. Hypertension 41:724–729; 2003a.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, C.; Luo, Y.; Asico, L. D.; Hopfer, U.; Eisner, G.M.; Felder, R. A.; Jose, P. A. Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension 42:787–792; 2003b.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, C.; Wang, D.; Asico, L. D.; Welch, W. J.; Wilcox, C. S.; Hopfer, U.; Eisner, G. M.; Felder, R. A.; Jose, P. A. Aberrant D1 and D3 dopamine receptor transregulation in hypertension. Hypertension 43:654–660; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, Z.; Zhang, S. H.; Wagner, C.; Kurtz, A.; Maeda, N.; Coffman, T.; Arendshorst, W. J. Angiotensin AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice. Hypertension 31:1171–1177; 1998.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip G. Woost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woost, P.G., Kolb, R.J., Finesilver, M. et al. Strategy for the development of a matched set of transport-competent, angiotensin receptor-deficient proximal tubule cell lines. In Vitro Cell.Dev.Biol.-Animal 42, 189–200 (2006). https://doi.org/10.1290/0511076.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0511076.1

Key words

Navigation