Skip to main content
Log in

Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Our purpose was to engineer three-dimensional skeletal muscle tissue constructs from primary cultures of adult rat myogenic precursor cells, and to measure their excitability and isometric contractile properties. The constructs, termed myooids, were muscle-like in appearance, excitability, and contractile function. The myooids were 12 mm long and ranged in diameter from 0.1 to 1 mm. The myooids were engineered with synthetic tendons at each end to permit the measurement of isometric contractile properties. Within each myooid the myotubes and fibroblasts were supported by an extracellular matrix generated by the cells themselves, and did not require a preexisting scaffold to define the size, shape, and general mechanical properties of the resulting structure. Once formed, the myooids contracted spontaneously at approximately 1 Hz, with peak-to-peak force amplitudes ranging from 3 to 30 μN. When stimulated electrically the myooids contracted to produce force. The myooids (n=14) had the following mean values: diameter of 0.49 mm, rheobase of 1.0 V/mm, chronaxie of 0.45 ms, twitch force of 215 μN, maximum isometric force of 440 μN, resting baseline force of 181 μN, and specific force of 2.9kN/m2. The mean specific force was approximately 1% of the specific force generated by control adult rat muscle. Based on the functional data, the myotubes in the myooids appear to remain arrested in an early developmental state due to the absence of signals to promote expression of adult myosin isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brooke, M. H.; Kaiser, K. K. Muscle fiber types: how many and what kind? Arch. Neurol. 23:369–379; 1970.

    PubMed  CAS  Google Scholar 

  • Close, R. Dynamic properties of fast and slow skeletal muscles of the rat during development. J. Physiol. 173:74–95; 1964.

    PubMed  CAS  Google Scholar 

  • Delvoye, P.; Wiliquet, P.; Leveque, J.; Nusgens, B. V.; Lapiere, C. M. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J. Investig. Dermatol. 97: 898–902; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Faulkner, J. A.; Brooks, S. V.; Dennis, R. G. Measurement of recovery of function following whole muscle transfer, myoblast transfer, and gene therapy. In: Morgan, J. R.; Yarmush, M. L., ed., Methods in tissue engineering, vol. 18. Tissue engineering methods and protocols. Totowa, NJ: Humana Press; 1997:155–172.

    Google Scholar 

  • Gordon, A. M.; Huxley, A. F.; Julian, F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J. Physiol. (London) 184(1):170–192; 1966.

    CAS  Google Scholar 

  • Guth, L; Samaha, F. J. Erroneous interpretations which may result from application of the “myofibrillar ATPase” histochemical procedure to developing muscle. Exp. Neurol. 34:465–475; 1972.

    Article  PubMed  CAS  Google Scholar 

  • Hatfaludy, S.; Shansky, J.; Vandenburgh, H. H. Metabolic alterations induced in cultured skeletal muscle by stretch-relaxation activity. Am. J. Physiol. 256(1 Pt 1):C175-C181; 1989.

    PubMed  CAS  Google Scholar 

  • Lewis, M. R. Rhythmical contraction of the skeletal muscle tissue observed in tissue cultures. Am. J. Physiol. 38:153–161; 1915.

    Google Scholar 

  • Minns, H. G. A voltage-controlled force generator for calibrating sensitive transducers. J. Appl. Physiol. 30(6):895–896; 1971.

    PubMed  CAS  Google Scholar 

  • Okano, T.; Matsuda, T. Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant 7(5):435–442; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Okano, T.; Satoh, S.; Oka, T.; Matsuda, T. Tissue engineering of skeletal muscle: highly dense, highly oriented hybrid muscular tissues biomimicking native tissues. ASAIO J. 43:M749-M753; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Perrone, C. E.; Fenwick-Smith, D.; Vandenburgh, H. H. Collagen and stretch modulate autocrine secretion of insulin-like growth factor-1 and insulin-like growth factor binding proteins from differentiated skeletal muscle cells. J. Biol. Chem. 270(5):2099–2106; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E.; McCormick, K. M. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123:213–257; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Shansky, J.; Chromiak, J.; Del Tatto, M.; Vandenburgh, H. A simplified method for tissue engineering skeletal muscle organoids in vitro. In Vitro Cell. Dev. Biol. Anim. 33:659–661; 1997.

    PubMed  CAS  Google Scholar 

  • Strohman, R. C.; Bayne, E.; Spector, D.; Obinata, T.; Micou-Eastwood, J.: Maniotis, A. Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cell. Dev. Biol. 26(2):201–208; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Swasdison, S.; Mayne, R. In vitro attachment of skeletal muscle fibers to a collagen gel duplicates the structure of the myotendinous junction. Exp. Cell. Res. 193:227–231; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Swasdison, S.; Mayne, R. Formation of highly organized skeletal muscle fibers in vitro: comparison with muscle development in vivo. J. Cell. Sci. 102:643–652; 1992.

    PubMed  Google Scholar 

  • Vandenburgh, H. H. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev. Biol. 93(2):438–443;, 1982.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H. H. A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro Cell. Dev. Biol. 24(7):609–619; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H. H.; Karlisch, P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell. Dev. Biol. 25(7):607–616; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H. H. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am. J. Physiol. 262(3 Pt 2):R350-R355; 1992.

    PubMed  CAS  Google Scholar 

  • Vandenburgh, H.; Del Tatto, M.; Shansky, J., et al. Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene. Ther. 7(17):2195–2200; 1996.

    PubMed  CAS  Google Scholar 

  • Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J. Skeletal muscle growth is stimulated by intermittent stretch-relaxation in tissue culture. Am. J. Physiol. 256(3 Pt 1):C674-C682; 1989.

    PubMed  CAS  Google Scholar 

  • Vandenburgh, H. H.; Hatfaludy, S.; Karlisch, P.; Shansky, J. Mechanically induced alterations in cultured skeletal muscle growth. J. Biomech. 24(Suppl. 1):91–99; 1991a.

    Article  PubMed  Google Scholar 

  • Vandenburgh, H. H.; Hatfaludy, S.; Sohar, I.; Shansky, J. Stretch-induced prostaglandins and protein turnover in cultured skeletal muscle. Am. J. Physiol. 259(2 Pt. 1):C232-C240; 1990.

    PubMed  CAS  Google Scholar 

  • Vandenburgh, H.; Kaufman, S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203(4377):265–268; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Vandenburgh, H. H.; Swasdison, S.; Karlisch, P. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro. FASEB J. 5(13):2860–2867; 1991b.

    PubMed  CAS  Google Scholar 

  • van Wachem, P. B.; van Luyn, M. J. A.; Ponte da Costa, M. L. Myoblast seeding in a collagen matrix evaluated in vitro. J. Biomed. Mat. Res. 30:353–360; 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Dennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dennis, R.G., Kosnik, P.E. Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell.Dev.Biol.-Animal 36, 327–335 (2000). https://doi.org/10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2

Key words

Navigation