Skip to main content

12 Making Fusion Toxins to Target Leukemia and Lymphoma

  • Protocol
Drug Targeting

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 25))

Abstract

Recombinant toxins are cytotoxic proteins that are encoded by DNA sequences that can be expressed in prokaryotic or eukaryotic cells. The proteins contain both a ligand, for binding to cells, and a toxin, for killing the cells. In recombinant toxins the connection between the toxin and ligand is encoded by the DNA and not produced by chemical conjugation. Since recombinant toxins must bind specifically to cell surface molecules to kill cells, the number of possible recombinant toxin molecules that can bind to a cell is in the hundreds or thousands; hence, the toxins must be very potent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yamaizumi, M., Mekada, E., Uchida, T., and Okada, Y. (1978) One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245ā€“250.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Carroll, S. F. and Collier, R. J. (1987) Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and shows functional homology with glutamic acid 148 of diphtheria toxin. J. Biol. Chem. 262, 8707ā€“8711.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Uchida, T., Pappenheimer, A. M., Jr., and Harper, A. A. (1972) Reconstitution of diphtheria toxin from two nontoxic cross-reacting mutant proteins. Science 175, 901ā€“903.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Uchida, T., Pappenheimer, A. M., Jr., and Greany, R. (1973) Diphtheria toxin and related proteins I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J. Biol. Chem. 248, 3838ā€“3844.

    CASĀ  PubMedĀ  Google ScholarĀ 

  5. Rolf, J. M., Gaudin, H. M., and Eidels, L. (1990) Localization of the diphtheria toxin receptor-binding domain to the carboxyl-terminal Mr āˆ¼ 6000 region of the toxin. J. Biol. Chem. 265, 7331ā€“7337.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Choe, S., Bennett, M. J., Fujii, G., Curmi, P. M. G., Kantardjieff, K. A., Collier, R. J., and Eisenberg, D. (1992) The crystal structure of diphtheria toxin. Science 357, 216ā€“222.

    CASĀ  Google ScholarĀ 

  7. Siegall, C. B., Chaudhary, V. K., FitzGerald, D. J., and Pastan, I. (1989) Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin. J. Biol. Chem. 264, 14,256ā€“14,261.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Kreitman, R. J., Batra, J. K., Seetharam, S., Chaudhary, V. K., FitzGerald, D. J., and Pastan, I. (1993) Single-chain immunotoxin fusions between anti-Tac and Pseudomonas exotoxin: relative importance of the two toxin disulfide bonds. Bioconj. Chem. 4, 112ā€“120.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Williams, D. P., Snider, C. E., Strom, T. B., and Murphy, J. R. (1990) Structure/ function analysis of interleukin-2-toxin (DAB486-IL-2). Fragment B sequences required for the delivery of fragment A to the cytosol of target cells. J. Biol. Chem. 265, 11,885ā€“11,889.

    CASĀ  PubMedĀ  Google ScholarĀ 

  10. Chaudhary, V. K., FitzGerald, D. J., and Pastan, I. (1991) A proper amino terminus of diphtheria toxin is important for cytotoxicity. Biochem. Biophys. Res. Commun. 180, 545ā€“551.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Seetharam, S., Chaudhary, V. K., FitzGerald, D., and Pastan, I. (1991) Increased cytotoxic activity of Pseudomonas exotoxin and two chimeric toxins ending in KDEL. J. Biol. Chem. 266, 17,376ā€“17,381.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Kreitman, R. J. and Pastan, I. (1995) Importance of the glutamate residue of KDEL in increasing the cytotoxicity of Pseudomonas exotoxin derivatives and for increased binding to the KDEL receptor. Biochem. J. 307, 29ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  13. Kreitman, R. J. and Pastan, I. (1997) Recombinant toxins containing human GM-CSF and either Pseudomonas exotoxin or diphtheria toxin kill gastrointestinal cancer and leukemia cells. Blood 90, 252ā€“259.

    CASĀ  PubMedĀ  Google ScholarĀ 

  14. Studier, F. W. and Moffatt, B. A. (1986) Use of bacteriophage T7 polymerase to direct selective expression of cloned genes. J. Mol. Biol. 189, 113ā€“130.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Brinkmann, U., Mattes, R. E., and Buckel, P. (1989) High-level expression of recombinant genes in Escherichia coli is dependent on the availability of the dnaY gene product. Gene 85, 109ā€“114.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Kreitman, R.J., Pastan, I. (2000). 12 Making Fusion Toxins to Target Leukemia and Lymphoma. In: Francis, G.E., Delgado, C. (eds) Drug Targeting. Methods in Molecular Medicineā„¢, vol 25. Humana Press. https://doi.org/10.1385/1-59259-075-6:215

Download citation

  • DOI: https://doi.org/10.1385/1-59259-075-6:215

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-531-7

  • Online ISBN: 978-1-59259-075-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics