Skip to main content
Log in

Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The brain is more highly enriched than most other tissues in long-chain polyunsaturated fatty acids (PUFA), particularly docosahexaenoic acid (DHA). In vitro studies of PUFA synthesis and release utilizing cell cultures of astrocytes, neurons, and cerebral microvascular endothelium have contributed significantly to our understanding of mechanisms potentially involved in the accretion of PUFA in brain. Both cerebral endothelium and astrocytes avidly elongate and desaturate precursors of the long-chain PUFAs when grown individually or in various co-culture combinations. The products, such as arachidonic acid (AA) and DHA, are released from the cells. In contrast, neurons appear unable to carry out fatty acid desaturation and thus are dependent upon preformed long-chain PUFA. Indeed, neurons co-cultured with astrocytes accumlate docosahexaenoate synthesized by the glial cells. Cerebral endothelial cultures are additionally capable of enriching the basolateral compartment (analogous to the brain extracellular space) with n-3 PUFA when grown in a membrane/chamber apparatus. The enrichment of this compartment with DHA is increased when cerebral endothelium is co-cultured with astrocytes. These data suggest that endothelial cells and astrocytes cooperate in the local synthesis and release of PUFA, collectively maintaining a brain environment enriched in long-chain PUFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bénistant C., Dehouck M-P., Fruchart J-C., Cecchelli R., and Lagarde M. (1995) Fatty acid composition of brain capillary endothelial cells: effect of the coculture with astrocytes. J. Lipid Res. 36, 2311–2319.

    PubMed  Google Scholar 

  • Bernoud N. Fenart L., Bénistant C., Pageaux J. F., Dehouck M. P., Molière P., et al. (1998) Astrocytes are mainly responsible for the polyunsaturated fatty acid enrichment in blood-brain barrier endothelial cells in vitro. J. Lipid Res. 39, 1816–1824.

    PubMed  CAS  Google Scholar 

  • Boyles J. K., Pitas R. E., Wilson E., Mahley R. W., and Taylor J. M. (1985) Apolipoprotein E associated with astrocytic glia of the central nervous system and with non-myelinating glia of the peripheral nervous system. J. Clin. Invest. 76, 1501–1513.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck B., Dehouck M-P., Fruchart J-C., and Cecchelli R. (1994) Upregulation of the low density lipoprotein receptor at the blood-brain barrier: Intercommunications between brain capillary endothelial cells and astrocytes. J. Cell Biol. 126, 465–473.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck B., Fenart L., Dehouck M-P., Pierce A., Torpier G., and Cecchelli R. (1997) A new function for the LDL receptor: Transcytosis of LDL across the blood-brain barrier. J. Cell Biol. 138, 877–889.

    Article  PubMed  CAS  Google Scholar 

  • Delton-Vandenbroucke I., Grammas P., and Anderson R. E. (1997) Polyunsaturated fatty acid metabolism in retinal and cerebral microvascular endothelial cells. J. Lipid Res. 38, 147–159.

    PubMed  CAS  Google Scholar 

  • Delton-Vandenbroucke I., Grammas P., and Anderson R. E. (1998) Regulation of n-3 and n-6 fatty acid metabolism in retinal and cerebral microvascular endothelial cells by high glucose. J. Neurochem. 70, 841–849.

    Article  PubMed  CAS  Google Scholar 

  • Delton-Vandenbroucke I., Grammas P., and Anderson R. E. (1999) A role for cerebral and retinal endothelial cells in the supply of docosahexaenoic acid to the brain and the retina? Lipids 34, S117.

    Google Scholar 

  • Dhopeshwarkar GA and Subramanian C (1976) Biosynthesis of polyunsaturated fatty acids in the developing brain: I. Metabolic transformations of intracranially administered 1-14C linolenic acid. Lipids 11, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein C. General properties of plasma lipoproteins and apolipoproteins, in Biochemistry and Biology of the Plasma Lipoproteins (Scanu A. M. and Spector A. A., eds.), Marcel Dekker, New York, NY, pp. 495–505.

  • Infante J. P. and Huszagh V. A. (1997) On the molecular etiology of decreased arachidonic (20;4n-6), docos-apentaenoic (22;5n-6) and docosahexaenoic (22;6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol. Cell. Biochem. 168, 101–115.

    Article  PubMed  CAS  Google Scholar 

  • Krul E. S. and Tang J. (1992) Secretion of apolipoprotein E by an astrocytoma cell line. J. Neurosci. Res. 32, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Möckel B., Zinke H., Flach R., Weiss B., Weiler-Güttler H., and Gassen H. G. (1994) Expression of apolipoprotein A-I in porcine brain endothelium in vitro. J. Neurochem. 62, 788–798.

    Article  PubMed  Google Scholar 

  • Moore S. A., Hurt E. F., Yoder E. J., Sprecher H., and Spector A. A. (1995) Docosahexaenoic acid synthesis in human skin fibroblasts involves peroxisomal retroconversion of tetracosahexaenoic acid. J. Lipid Res. 36, 2433–2443.

    PubMed  CAS  Google Scholar 

  • Moore S. A., Yoder E., Murphy S., Dutton G. R., and Spector A. A. (1991) Astrocytes, not neurons, produce docosahexaenoic acid (22;6ω-3) and arachidonic acid (20;4ω-6). J. Neurochem. 56, 518–524.

    Article  PubMed  CAS  Google Scholar 

  • Moore S. A., Yoder E., and Spector A. A. (1990) Role of the blood-brain barrier in the formation of long-chain ω-3 and ω-6 fatty acids from essential fatty acid precursors. J. Neurochem. 55, 391–402.

    Article  PubMed  CAS  Google Scholar 

  • Petroni A., Salami M., Blasevich M., Papini N., and Galli C. (1994) Inhibition by n-3 fatty acids of arachidonic acid metabolism in a primary culture of astroglial cells. Neurochem. Res. 19, 1187–1193.

    Article  PubMed  CAS  Google Scholar 

  • Pitas R. E., Boyles J. K., Lee S. H., Foss D., and Mahley R. W. (1987a) Astrocytes synthesize apolipoprotein E and metabolize apolipoprotein E-containing lipoproteins. Biochim. Biophys. Acta 917, 148–161.

    PubMed  CAS  Google Scholar 

  • Pitas R. E., Boyles J. K., Lee S. H., Hui D., and Weisgraber K. H. (1987b) Lipoproteins and their receptors in the central nervous system. J. Biol. Chem. 262, 14,352–14,360.

    CAS  Google Scholar 

  • Roheim P. S., Carey M., Forte T., and Vega G. L. (1979) Apolipoproteins in human cerebrospinal fluid. Proc. Natl. Acad. Sci. 76, 4646–4649.

    Article  PubMed  CAS  Google Scholar 

  • Salem N. Jr., Kim H. Y., and Yergey J. A. (1986) Docosahexaenoic acid: Membrane function and metabolism, in Health Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos A. P., ed.), Academic Press, New York, NY, pp. 263–317.

    Google Scholar 

  • Scott B. L. and Bazan N. G. (1989) Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl. Acad. Sci. USA 86, 2903–2907.

    Article  PubMed  CAS  Google Scholar 

  • Spector A. A. (2001) Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain. J. Mol. Neurosci. 16(2–3), 73–79.

    Google Scholar 

  • Vilaró S., Camps L., Reina M., Perez-Clausell J., Llobera M., and Olivecrona T. (1990) Localization of lipoprotein lipase to discrete areas of the guinea pig brain. Brain Res. 506, 249–253.

    Article  PubMed  Google Scholar 

  • Voss A., Reinhart M., Sankarappa S., and Sprecher H. (1991) The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Biol. Chem. 266, 19,995–20,000.

    CAS  Google Scholar 

  • Weiler-Güttler H., Sommerfeldt M., Papandrikopoulou A, Mischek U., Bonitz D., Frey A., et al. (1990) Synthesis of apolipoprotein A-1 in pig brain microvascular endothelial cells J. Neurochem. 54, 444–450.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.A. Polyunsaturated fatty acid synthesis and release by brain-derived cells in vitro. J Mol Neurosci 16, 195–200 (2001). https://doi.org/10.1385/JMN:16:2-3:195

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:16:2-3:195

Index Entries

Navigation