Skip to main content
Log in

Iron and α-synuclein in the substantia nigra of MPTP-treated mice

Effect of neuroprotective drugs R-apomorphine and green tea polyphenol (−)-epigallocatechin-3-gallate

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

One of the prominent pathological features of Parkinson’s disease (PD) is the abnormal accumulation of iron in the substantia nigra pars compacta (SNpc), in the reactive microglia, and in association with neuromelanin, within the melanin-containing dopamine (DA) neurons. Lewy body, the morphological hallmark of PD, is composed of lipids, redox-active iron, and aggregated α-synuclein, concentrating in its peripheral halo and ubiquitinated, hyperphosphorylated, neurofilament proteins. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. Recent observations, that iron induces aggregation of inert α-synuclein to toxic aggregates, have reinforced the critical role of iron in oxidative stress-induced pathogenesis of DA neuron degeneration and protein degradation via ubiquitination. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and 6-hydroxydopamine-induced neurodegeneration in rodents and nonhuman primates is associated with increased presence of iron and α-synuclein in the SNpc. The accumulation of iron in MPTP-induced neurodegeneration has been linked to nitric oxide-dependent mechanism, resulting in degradation of prominent iron regulatory proteins by ubiquitination. Radical scavengers such as R-apomorphine and green tea catechin polyphenol (−)-epigallocatechin-3-gallate, as well as the recently developed brain-permeable VK-28 series derivative iron chelators, which are neuroprotective against these neurotoxins in mice and rats, prevent the accumulation of iron and α-synuclein in SNpc. This study supports the notion that a combination of iron chelation and antioxidant therapy, as emphasized on several occasions, might be a significant approach to neuroprotection in PD and other neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronowski J., Strong R., Shirzadi A., and Grotta J. C. (2003) Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke 34, 1246–1251.

    Article  PubMed  CAS  Google Scholar 

  • Bar Am O., Amit T., and Youdim M. B. H. (2004a) Contrasting neuroprotective and neurotoxic actions of respective metabolites of anti-Parkinson drugs rasagiline and selegiline. Neurosci. Lett., 355, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Bar Am O., Yogev-Falach M., Amit T., Sagi Y., and Youdim M. B. H. (2004b) Regulation of protein kinase C by the MAO-B inhibitor anti-Parkinson drug rasagiline and its anti-Alzheimer cholinesterase inhibitor derivatives in vivo. J. Neurochem., 89, 1119–1125.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G., Busceti C. L., Cuomo L., Giorgi F. S., Orzi F., De Blasi A., et al. (2002a) Continuous subcutaneous infusion of apomorphine rescues nigro-striatal dopaminergic terminals following MPTP injection in mice. Neuropharmacology 42, 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Battaglia G., Gesi M., Lenzi P., Busceti C. L., Soldani P., Orzi F., et al. (2002b) Morphological and biochemical evidence that apomorphine rescues striatal dopamine terminals and prevents methamphetamine toxicity. Ann. N. Y. Acad. Sci. 965, 254–266.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shachar D., Eshel G., Finberg J. P., and Youdim M. B. (1991) The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J. Neurochem. 56, 1441–1444.

    Article  PubMed  CAS  Google Scholar 

  • Bernardi P., Petronilli V., Di Lisa F., and Forte M. (2001) A mitochondrial perspective on cell death. Trends Biochem. Sci. 26, 112–117.

    Article  PubMed  CAS  Google Scholar 

  • Berra E., Municio M. M., Sanz L., Frutos S., Diaz-Meco M. T., and Moscat J. (1997) Positioning atypical protein kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol. Cell. Biol. 17, 4346–4354.

    PubMed  CAS  Google Scholar 

  • Blum D., Torch S., Lambeng N., Nissou M., Benabid A. L., Sadoul R., and Verna J. M. (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog. Neurobiol. 65, 135–172.

    Article  PubMed  CAS  Google Scholar 

  • Blum D., Torch S., Nissou M. F., Benabid A. L. and Verna J. M. (2000) Extracellular toxicity of 6-hydroxy-dopamine on PC12 cells. Neurosci. Lett. 283, 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Chase T. N. and Oh J. D. (2000) Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci. 23, S86-S91.

    Article  PubMed  CAS  Google Scholar 

  • Clayton D. F. and George J. M. (1998) The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254.

    Article  PubMed  CAS  Google Scholar 

  • Cory S. and Adams J. M. (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2, 647–656.

    Article  PubMed  CAS  Google Scholar 

  • Dauer W. and Przedborski S. (2003) Parkinson’s disease: mechanisms and models. Neuron 39, 889–909.

    Article  PubMed  CAS  Google Scholar 

  • Dempsey E. C., Newton A. C., Mochly-Rosen D., Fields A. P., Reyland M. E., Insel P. A. and Messing R. O. (2000) Protein kinase C isozymes and the regulation of diverse cell responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L429–438.

    PubMed  CAS  Google Scholar 

  • Ebadi M., Govitrapong P., Sharma S., Muralikrishnan D., Shavali S., Pellett L., et al. (2001) Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol. Signals Recept. 10, 224–253.

    Article  PubMed  CAS  Google Scholar 

  • Elsworth J. D., Deutch A. Y., Redmond D. E., Jr., Sladek J. R., Jr., and Roth R. H. (1990) MPTP reduces dopamine and norepinephrine concentrations in the supplementary motor area and cingulate cortex of the primate. Neurosci. Lett. 114, 316–322.

    Article  PubMed  CAS  Google Scholar 

  • Felletschin B., Bauer P., Walter U., Behnke S., Spiegel J., Csoti I., et al. (2003) Screening for mutations of the ferritin light and heavy genes in Parkinson’s disease patients with hyperechogenicity of the substantia nigra. Neurosci. Lett. 352, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Gassen M., Glinka Y., Pinchasi B., and Youdim M. B. H. (1996) Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur. J. Pharmacol. 308, 219–225.

    Article  PubMed  CAS  Google Scholar 

  • Gassen M., Gross A., and Youdim M. B. (1998). Apomophine enantiomers protect cultured pheochromocytoma (PC12) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov, Disord, 13, 242–248.

    Article  CAS  Google Scholar 

  • Gassen M., Gross A., and Youdim M. B. H. (1999) Apomorphine, a dopamine receptor agonist with remarkable antioxidant and cytoprotective properties. Adv. Neurol. 80, 297–302.

    PubMed  CAS  Google Scholar 

  • Gerlach M., Ben-Shachar D., Riederer P., and Youdim M. B. (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63, 793–807.

    Article  PubMed  CAS  Google Scholar 

  • Grinberg L. N., Newmark H., Kitrossky N., Rahamim E., Chevion M., and Rachmilewitz E. A. (1997) Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem. Pharmacol. 54, 973–978.

    Article  PubMed  CAS  Google Scholar 

  • Group P. S. (2002) A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch. Neurol. 59, 1937–1943.

    Article  Google Scholar 

  • Grunblatt E., Mandel S., Jacob-Hirsch J., Zeligson S., Amariglo N., Rechavi G., et al. (2004) Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J. Neural. Transm. 111, 1435–1463.

    Google Scholar 

  • Grunblatt E., Mandel S., and Youdim M. B. H. (2000) Neuroprotective strategies in Parkinson’s disease using the models of 6-hydroxydopamine and MPTP. Ann. N. Y. Acad. Sci. 899, 262–273.

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E., Mandel S., Berkuzki T., and Youdim M. B. H. (1999) Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov. Disord. 14, 612–618.

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E., Mandel S., Maor G., and Youdim M. B. H. (2001a) Effects of R-apomorphine and S-apomorphine on MPTP-induced nigro-striatal dopamine neuronal loss. J. Neurochem. 77, 146–156.

    Article  PubMed  CAS  Google Scholar 

  • Grunblatt E., Mandel S., Maor G., and Youdim M. B. H. (2001b) Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray: effect of R-apomorphine. J. Neurochem. 78, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Gunshin H., Mackenzie B., Berger U. V., Gunshin Y., Romero M. F., Boron W. F., et al. (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488.

    Article  PubMed  CAS  Google Scholar 

  • Guo H., Tang Z., Yu Y., Xu L., Jin G., and Zhou J. (2002) Apomorphine induces trophic factors that support fetal rat mesencephalic dopaminergic neurons in cultures. Eur. J. Neurosci. 16, 1861–1870.

    Article  PubMed  Google Scholar 

  • Guo Q., Zhao B., Li M., Shen S., and Xin W. (1996) Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim. Biophys. Acta 1304, 210–222.

    PubMed  CAS  Google Scholar 

  • Hanson E. S. and Leibold E. A. (1999) Regulation of the iron regulatory proteins by reactive nitrogen and oxygen species. Gene Expr. 7, 367–376.

    PubMed  CAS  Google Scholar 

  • Hartmann A., Michel P. P., Troadec J. D., Mouatt-Prigent A., Faucheux B. A., Ruberg M., et al. (2001) Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson’s disease? J. Neurochem. 76, 1785–1793.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Takeda A., Hsu L. J., Takenouchi T., and Masliah E. (1999) Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849–28852.

    Article  PubMed  CAS  Google Scholar 

  • Hassouna I., Wickert H., Zimmermann M., and Gillardon F. (1996) Increase in bax expression in substantia nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice. Neurosci. Lett. 204, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Hentze M. W. and Kuhn L. C. (1996) Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Natl. Acad. Sci. USA 93, 8175–8182.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E. C., Hunot S., Damier P., and Faucheux B. (1998) Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann. Neurol. 44, S115-S120.

    PubMed  CAS  Google Scholar 

  • Hunot S., Brugg B., Ricard D., Michel P. P., Muriel M. P., Ruberg M., et al. (1997) Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc. Natl. Acad. Sci. USA 94, 7531–7536.

    Article  PubMed  CAS  Google Scholar 

  • Ito K., Nagano-Saito A., Kato T., Arahata Y., Nakamura A., Kawasumi Y., et al. (2002) Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: a 6-[18F]fluoro-l-dopa PET study. Brain 125, 1358–1365.

    Article  PubMed  Google Scholar 

  • Iwai A., Masliah E., Yoshimoto M., Ge N., Flanagan L., de Silva H. A., et al. (1995) The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K., Paulus W., Grundke-Iqbal I., Riederer P., and Youdim M. B. H. (1990) Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J. Neural Transm. Park. Dis. Dement. Sect. 2, 327–340.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K. A. (2003) Neuropathological spectrum of synucleinopathies. Mov. Dis. Suppl. 6, S2-S12.

    Article  Google Scholar 

  • Jellinger K. A. (2001) The pathology of Parkinson’s disease. Adv. Neurol. 86, 55–72.

    PubMed  CAS  Google Scholar 

  • Jenner P. (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov. Disord. 13, 24–34.

    PubMed  Google Scholar 

  • Kaasinen V., Nagren K., Hietala J., Oikonen V., Vilkman H., Farde L., et al. (2000) Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson’s disease. Neurology 54, 1482–1487.

    PubMed  CAS  Google Scholar 

  • Kaur D., Yantiri F., Rajagopalan S., Kumar J., Mo J. Q., Boonplueang R., et al. (2003) Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37, 899–909.

    Article  PubMed  CAS  Google Scholar 

  • Kim S. and Ponka P. (2000) Effects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J. Biol. Chem. 275, 6220–6226.

    Article  PubMed  CAS  Google Scholar 

  • Lan J. and Jiang D. H. (1997) Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J. Neural Transm. (Budapest) 104, 469–481.

    Article  CAS  Google Scholar 

  • LaVaute T., Smith S., Cooperman S., Iwai K., Land W., Meyron-Holtz E., et al. (2001) Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 27, 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Lavedan C. (1998) The synuclein family. Genome Res. 8, 871–880.

    PubMed  CAS  Google Scholar 

  • Leibold E. A., Gahring L. C., and Rogers S. W. (2001) Immunolocalization of iron regulatory protein expression in the murine central nervous system. Histochem. Cell Biol. 115, 195–203.

    PubMed  CAS  Google Scholar 

  • Levites Y., Amit T., Mandel S., and Youdim M. B. H. (2003) Neuroprotection and neurorescue against amyloid beta toxicity and PKC-dependent release of nonamyloidogenic soluble precusor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J. 17, 952–954.

    PubMed  CAS  Google Scholar 

  • Levites Y., Amit T., Youdim M. B. H., and Mandel S. (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin-3-gallate neuroprotective action. J. Biol. Chem. 277, 30,574–30,580.

    Article  CAS  Google Scholar 

  • Levites Y., Weinreb O., Maor G., Youdim M. B. H., and Mandel S. (2001) Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem. 78, 1073–1082.

    Article  PubMed  CAS  Google Scholar 

  • Linazasoro G. (2002) Neuroprotection in Parkinson’s disease: love story or mission impossible? Expert Rev. Neurother. 2, 403–416.

    Article  PubMed  Google Scholar 

  • Maher P. (2001) How protein kinase C activation protects nerve cells from oxidative stress-induced cell death. J. Neurosci. 21, 2929–2938.

    PubMed  CAS  Google Scholar 

  • Mandel S., Grunblatt E., and Youdim M. B. H. (2000) cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson’s disease. J. Neural Transm. Suppl. 60, 117–124.

    PubMed  Google Scholar 

  • Mandel S., Grunblatt E., Maor G., and Youdim M. B. H. (2002a) Early and late gene changes in MPTP mice model of Parkinson’s disease employing cDNA microarray. Neurochem. Res. 27, 1231–1243.

    Article  PubMed  CAS  Google Scholar 

  • Mandel S., Grunblatt E., Riederer P., Gerlach M., Levites Y., and Youdim M. B. H. (2003a) Neuroprotective strategies in Parkinson’s disease: an update on progress. CNS Drugs 17, 729–762.

    Article  PubMed  CAS  Google Scholar 

  • Mandel S., Grunblatt E., Royak-Levites Y., Maor G., and Youdim M. B. H. (2002b) Molecular events in dopaminergic neurodegeneration and neuroprotection in MPTP model of parkinson’s disease employing cDNA microarray, in Brain DiseasE, Therapeutic Strategies and Repair, Vol. 34, Said, A. C. M., ed., Martin Dunitz, London, pp. 291–298.

    Google Scholar 

  • Mandel S. Weinreb O. Amit T., and Youdim, M.B.H. (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (−)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J. Neurochem., 88, 1555–1569.

    Article  PubMed  CAS  Google Scholar 

  • Mandel S., Weinreb O., and Youdim M. B. (2003b) Using cDNA microarray to assess Parkinson’s disease models and the effects of neuroprotective drugs. Trends Pharmacol. Sci. 24, 184–191.

    Article  PubMed  CAS  Google Scholar 

  • Maroteaux L. and Scheller R. H. (1991) The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Brain Res. Mol. Brain Res. 11, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Martin F. L., Williamson S. J. M., Paleologou K. E., Hewitt R., El-Agnaf O. M. A., and Allsop D. (2003) Fe(III)-induced damage in α-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the Comet assay. J. Neurochem. 87, 620.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Iwai A., Mallory M., Ueda K., and Saitoh T. (1996) Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease. Am. J. Pathol. 148, 201–210.

    PubMed  CAS  Google Scholar 

  • Matarredona E. R., Santiago M., Cano J., and Machado A. (1997) Involvement of iron in MPP+ toxicity in substantia nigra: protection by desferrioxamine. Brain Res. 773, 76–81.

    Article  PubMed  CAS  Google Scholar 

  • McNaught K. S., Belizaire R., Jenner P., Olanow C. W., and Isacson O. (2002) Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci. Lett. 326, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Merry D. E. and Korsmeyer S. J. (1997) Bcl-2 gene family in the nervous system. Annu. Rev. Neurosci. 20, 245–267.

    Article  PubMed  CAS  Google Scholar 

  • Mori S., Fujitake J., Kuno S., and Sano Y. (1988) Immunohistochemical evaluation of the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic nigrostriatal neurons of young adult mice using dopamine and tyrosine hydroxylase antibodies. Neurosci. Lett. 90, 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T. (2002) Parkinson’s disease: changes in apoptosis-related factors suggesting possible gene therapy. J. Neural Transm. 109, 731–745.

    Article  PubMed  CAS  Google Scholar 

  • Offen D., Beart P. M., Cheung N. S., Pascoe C. J., Hochman A., Gorodin S., et al. (1998) Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc. Natl. Acad. Sci. USA 95, 5789–5794.

    Article  PubMed  CAS  Google Scholar 

  • Ohta M., Mizuta I., Ohta K., Nishimura M., Mizuta E., Hayashi K., and Kuno S. (2000) Apomorphine upregulates NGF and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 272, 18–22.

    Article  PubMed  CAS  Google Scholar 

  • Olanow C. W. and Youdim M. B. (1996) Iron and neurodegeneration: prospects for neuroprotection, in Neurodegeneration and Neuroprotection in Parkinson’s Disease, Olanow, C. W., Jenner, P., and Youdim, M. B., eds., Academic Press, London, pp. 55–69.

    Google Scholar 

  • Ostrerova-Golts N., Petrucelli L., Hardy J., Lee J. M., Farer M., and Wolozin B. (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci. 20, 6048–6054.

    PubMed  CAS  Google Scholar 

  • Perry T. L., Yong V. W., Jones K., and Wright J. M. (1986) Manipulation of glutathione contents fails to alter dopaminergic nigrostriatal neurotoxicity of N-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) in the mouse. Neurosci. Lett. 70, 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Petersen K., Olesen O. F., and Mikkelsen J. D. (1999) Developmental expression of alpha-synuclein in rat hippocampus and cerebral cortex. Neuroscience 91, 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Ponka P. (2004) Hereditary causes of distributed iron homeostasis in the central nervous system. Ann. NY Acad. Sci. 1012, 267–281.

    Article  PubMed  CAS  Google Scholar 

  • Ravina B. M., Fagan S. C., Hart R. G., Hovinga C. A., Murphy D. D., Dawson T. M., and Marler J. R. (2003) Neuroprotective agents for clinical trials in Parkinson’s disease: a systematic assessment. Neurology 60, 1234–1240.

    PubMed  CAS  Google Scholar 

  • Riederer P., Sofic E., Rausch W. D., Schmidt B., Reynolds G. P., Jellinger K., and Youdim M. B. H. (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem. 52, 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Sagi Y., Weinstock M., and Youdim M. B. (2003) Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor. J. Neurochem. 86, 290–297.

    Article  PubMed  CAS  Google Scholar 

  • Salah N., Miller N. J., Paganga G., Tijburg L., Bolwell G. P., and Rice-Evans C. (1995) Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Schneider J. S., Tinker J. P., Van Velson M., Menzaghi F., and Lloyd G. K. (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J. Pharmacol. Exp. Ther. 290, 731–739.

    PubMed  CAS  Google Scholar 

  • Seo J. H., Rah J. C., Choi S. H., Shin J. K., Min K., Kim H. S., et al. (2002) α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt kinase pathway. FASEB J. 5, 5.

    Google Scholar 

  • Shachar D. B., Kahana N., Kampel V., Warshawsky A., and Youdim M. B. (2004) Neuroprotection by a novel brain permeable iron chelator, VK-28, against 6-hydroxydopamine lession in rats. Neuropharmacology 46, 254–263.

    Article  PubMed  CAS  Google Scholar 

  • Sofic E., Paulus W., Jellinger K., Riederer P., and Youdim M. B. H. (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J. Neurochem. 56, 978–982.

    Article  PubMed  CAS  Google Scholar 

  • Temlett J. A., Landsberg J. P., Watt F., Grime G. W. (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J. Neurochem. 62, 134–146.

    Article  PubMed  CAS  Google Scholar 

  • Turnbull S., Tabner B. J., El-Agnaf O. M., Moore S., Davies Y., and Allsop D. (2001) α-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic. Biol. Med. 30, 1163–1170.

    Article  PubMed  CAS  Google Scholar 

  • Vila M. and Przedborski S. (2003) Targeting programmed cell death in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 365–375.

    Article  PubMed  CAS  Google Scholar 

  • Vila M., Jackson-Lewis V., Vukosavic S., Djaldetti R., Liberatore G., Offen D., et al. (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 98, 2837–2842.

    Article  PubMed  CAS  Google Scholar 

  • Vila M., Vukosavic S., Jackson-Lewis V., Neystat M., Jakowec M., and Przedborski S. (2000) Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J. Neurochem. 74, 721–729.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O., Mandel S., and Youdim M. B. H. (2003a) cDNA gene expression profile homology of antioxidants and their anti-apoptotic and pro-apoptotic activities in human neuroblastoma cells. FASEB J. 17, 935–937.

    PubMed  CAS  Google Scholar 

  • Weinreb O., Mandel S., and Youdim M. B. (2003b) Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (−)-epigallocatechine-3-gallate, and melatonin. Ann. N. Y. Acad. Sci. 993, 351–361; discussion, 387–393.

    Article  PubMed  CAS  Google Scholar 

  • Withers G. S., George J. M., Banker G. A., and Clayton D. F. (1997) Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Res. Dev. Brain Res. 99, 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Yang L., Matthews R. T., Schulz J. B., Klockgether T., Liao A. W., Martinou J. C., et al. (1998) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride neurotoxicity is attenuated in mice overexpressing Bcl-2. J. Neurosci. 18, 8145–8152.

    PubMed  CAS  Google Scholar 

  • Yogev-Falach M., Amit T., Bar-Am O., and Youdim M. B. (2003) The importance of propargylamine moiety in the anti-Parkinson drug rasagiline and its derivatives in MAPK-dependent amyloid precursor protein processing. FASEB J. 17, 2325–2327.

    PubMed  CAS  Google Scholar 

  • Youdim M. B. H. (2003) Rasagiline: an anti-Parkinson drug with neuroprotective activity. Expert Rev. Neurother. 3, 737–749.

    Article  CAS  PubMed  Google Scholar 

  • Youdim M. B. H. and Riederer P. (2004) Iron in the brain, normal and pathological, in Encyclopedia of Neuroscience, Smith, B., and Adelman, G., eds., Elsevier, Amsterdam, in press.

    Google Scholar 

  • Youdim M. B. H., Stephenson G., and Ben-Shachar D. (2004) Ironing iron out in Parkinson’s disease and other neurodegenerative diseases with iron chelators; a lesson from 6-hydroxydopamine and iron chelators desferal and vk-28. Ann. N. Y. Acad. Sci., 1012, 306–325.

    Article  PubMed  CAS  Google Scholar 

  • Zecca L., Youdim M. B., Riederer P., Connor J. R., Crichton R. R. (2004) Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci. 5, 863–873.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa B. H. Youdim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandel, S., Maor, G. & Youdim, M.B.H. Iron and α-synuclein in the substantia nigra of MPTP-treated mice. J Mol Neurosci 24, 401–416 (2004). https://doi.org/10.1385/JMN:24:3:401

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:24:3:401

Index Entries

Navigation