Skip to main content

Genome Plasticity

Insertion Sequence Elements, Transposons and Integrons, and DNA Rearrangement

  • Protocol
Genomics, Proteomics, and Clinical Bacteriology

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 266))

Abstract

Living organisms are defined by the genes they possess. Control of expression of this gene set, both temporally and in response to the environment, determines whether an organism can survive changing conditions and can compete for the resources it needs to reproduce. Bacteria are no exception; changes to the genome will, in general, threaten the ability of the microbe to survive, but acquisition of new genes may enhance its chances of survival by allowing growth in a previously hostile environment. For example, acquisition of an antibiotic resistance gene by a bacterial pathogen can permit it to thrive in the presence of an antibiotic that would otherwise kill it; this may compromise clinical treatments. Many forces, chemical and genetic, can alter the genetic content of DNA by locally changing its nucleotide sequence. Notable for genetic change in bacteria are transposable elements and site-specific recombination systems such as integrons. Many of the former can mobilize genes from one replicon to another, including chromosome-plasmid translocation, thus establishing conditions for interspecies gene transfer. Balancing this, transposition activity can result in loss or rearrangement of DNA sequences. This chapter discusses bacterial DNA transfer systems, transposable elements and integrons, and the contributions each makes towards the evolution of bacterial genomes, particularly in relation to bacterial pathogenesis. It highlights the variety of phylogenetically distinct transposable elements, the variety of transposition mechanisms, and some of the implications of rearranging DNA, and addresses the effects of genetic change on the fitness of the microbe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deng, W., Burland, V., Plunkett III, G., Boutin, A., Mayhew, G. F., Liss, P., et al. (2002) Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611.

    Article  PubMed  CAS  Google Scholar 

  2. Welch, R. A., Burland, V., Plunkett III, G., Redford, P., Roesch, P., Rasko, D., et al. (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Nat. Acad. Sci. USA 99, 17,020–17,024.

    Article  PubMed  CAS  Google Scholar 

  3. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., et al. (2001) Complete genome sequence of enterohemorrhagic Escherichia coli O157:H7 and genomic comparison with a laboratory strain K12. DNA Res. 8, 11–22.

    Article  PubMed  CAS  Google Scholar 

  4. Parkhill, J., Dougan, G., James, K. D., Thomson, N. R., Pickard, D., Wain, J., et al. (2001) Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852.

    Article  PubMed  CAS  Google Scholar 

  5. Lawrence, J. G. and Roth, J. R. (1999) Genomic flux: genome evolution by gene loss and acquisition. In Organization of the Prokaryotic Genome (Charlebois, R. L., ed.), ASM Press, Washington, DC, pp. 263–289.

    Google Scholar 

  6. Waldor, M. and Mekalanos, J. (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914.

    Article  PubMed  CAS  Google Scholar 

  7. Waldor, M. K. (1998) Bacteriophage biology and bacterial virulence. Trend Microbiol. 6, 295–297.

    Article  CAS  Google Scholar 

  8. Thomas, C. M., ed. (2000) The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread, Harwood Academic Publishers, The Netherlands.

    Google Scholar 

  9. Syvanen, M. and Kado, C. I., eds. (1998) Horizontal Gene Transfer, Chapman & Hall, London.

    Google Scholar 

  10. Broda, P., ed. (1979) Plasmids, W. H. Freeman & Co., Oxford.

    Google Scholar 

  11. Burrus, V., Pavlovic, G., Decaris, B., and Guédon, G. (2002) Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46, 601–610.

    Article  PubMed  CAS  Google Scholar 

  12. Salyers, A. A., Shoemaker, N. B., Stevens, A. M., and Li, L. Y. (1995) Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59, 579–590.

    PubMed  CAS  Google Scholar 

  13. Scott, J. R. and Churchward, G. G. (1995) Conjugative transposition. Ann. Rev. Microbiol. 49, 367–397.

    Article  CAS  Google Scholar 

  14. Zechner, E. L., de la Cruz, F., Eisenbrandt, R., Grahn, A. M., Koraimann, G., Lanka, E., et al. (2000) Conjugative-DNA transfer processes, in The Horizontal Gene Pool: Bacterial Plasmids and Gene Spread (Thomas, C. M.,ed.), Harwood Academic Publishers, Amsterdam, pp. 87–174.

    Google Scholar 

  15. Wilkins, B. M. (1995) Gene transfer by bacterial conjugation: diversity of systems and functional specializations, in Society for General Microbiology Symposium 52, Population Genetics of Bacteria (Baumberg, S., Young, J. P. W., Wellington, E. M. H., and Saunders, J. R.,eds.), Cambridge University Press, pp. 59–88.

    Google Scholar 

  16. Masters, M. (1996) Generalized transduction, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. (Neidhardt, F. C.,ed.), ASM Press, Washington, DC, pp. 2421–2441.

    Google Scholar 

  17. Weisberg, R. A. (1996) Specialized transduction, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. (Neidhardt, F. C.,ed.), ASM Press, Washington, DC, pp. 2442–2448.

    Google Scholar 

  18. Dubnau, D. (1999) DNA uptake in bacteria. Ann. Rev. Microbiol. 53, 217–244.

    Article  CAS  Google Scholar 

  19. Griffith, F. (1928) Significance of pneumococcal types. J. Hyg. 27, 113–159.

    Article  CAS  Google Scholar 

  20. Lorenz, M. G. and Wackernagel, W. (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58, 563–602.

    PubMed  CAS  Google Scholar 

  21. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D., and Rehrauer, W. M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465.

    PubMed  CAS  Google Scholar 

  22. Dowson, C. G., Coffey, T. J., and Spratt, B. G. (1994) Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to-lactam antibiotics. Trend. Microbiol. 2, 361–366.

    Article  CAS  Google Scholar 

  23. Stanisich, V. A., Bennett, P. M., and Ortiz, J. M. (1976) A molecular analysis of transductional marker rescue involving P-group plasmids in Pseudomonas aeruginosa. Mol. Gen. Genet. 143, 333–337.

    Article  PubMed  CAS  Google Scholar 

  24. Craig, N. L. (1996) Transposition, in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. (Neidhardt, F. C.,ed.), ASM Press, Washington, DC, pp. 2339–2362.

    Google Scholar 

  25. Davies, D. R., Goryshin, I. Y., Reznikoff, W. S., and Rayment, I. (2000) Threedimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289, 77–85.

    Article  PubMed  CAS  Google Scholar 

  26. Savilahti, H., Rice, P. A., and Mizuuchi, K. (1995) The phage Mu transpososome core: DNA requirements for assembly and function. EMBO J. 14, 4893–4903.

    PubMed  CAS  Google Scholar 

  27. Chandler, M. and Mahillon, J. (2002) Insertion sequences revisited, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M.,eds.), ASM Press, Washington, DC, pp. 305–366.

    Google Scholar 

  28. Chandler, M. and Mahillion, J. (2000) Insertion sequence nomenclature. ASM News 66, 324.

    Google Scholar 

  29. Mahillon, J. and Chandler, M. (1998) Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774.

    PubMed  CAS  Google Scholar 

  30. Toussaint, A. and Résibois, A. (1983) Phage Mu: transposition as a life-style, in Mobile Genetic Elements (Shapiro, J. A.,ed.), Academic Press, New York, pp. 103–158.

    Google Scholar 

  31. Grindley, N. D. F. (2002) The movement of Tn3-like elements: transposition and cointegrate resolution, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds.), ASM Press, Washington, DC, pp. 272–304.

    Google Scholar 

  32. Grinsted, J., de la Cruz, F., and Schmitt, R. (1990) The Tn21 subgroup of bacterial transposable elements. Plasmid 24, 163–189.

    Article  PubMed  CAS  Google Scholar 

  33. Sherratt, D. (1989) Tn3 and related transposable elements: site-specific recombination and transposition, in Mobile DNA (Berg, D. and Howe, M.,eds.), ASM Press, Washington, DC, pp. 163–184.

    Google Scholar 

  34. Garcillán-Barcia, M. P., Bernales, I., Mendiola, V., and de la Cruz, F. (2002) IS91 rolling-circle transposition, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M.,eds), ASM Press, Washington, DC, pp. 891–904.

    Google Scholar 

  35. Taylor, A. L. (1963) Bacteriophage-induced mutations in E. coli. Proc. Nat. Acad. Sci. USA 50, 1043–1051.

    Article  CAS  Google Scholar 

  36. McClintock, B. (1956) Controlling elements and the gene. Cold Spring Harb. Symp. Quant. Biol. 21, 197–216.

    PubMed  CAS  Google Scholar 

  37. Hirsch, H. J., Saedler, H., and Starlinger, P. (1972) Insertion mutations in the control region of the galactose operon of E. coli II. Physical characterization of the mutations. Mol. Gen. Genet. 115, 266–276.

    Article  PubMed  CAS  Google Scholar 

  38. Barth, P. T., Datta, N., Hedges, R. W., and Grinter, N. J. (1976) Transposition of a deoxyribonucleic acid sequence encoding trimethoprim and streptomycin resistances from R483 to other replicons. J. Bacteriol. 125, 800–810.

    PubMed  CAS  Google Scholar 

  39. Berg, D. E., Davies, J., Allet, B., and Rochaix, J.-D. (1975) Transposition of R factor genes to bacteriophage λ. Proc. Nat. Acad. Sci. USA 72, 3628–3632.

    Article  PubMed  CAS  Google Scholar 

  40. Foster, T. J., Howe, T. G. B., and Richmond, K. M. V. (1975) Translocation of the tetracycline resistance determinant from R100-1 to the Escherichia coli K12 chromosome. J. Bacteriol. 124, 1153–1158.

    PubMed  CAS  Google Scholar 

  41. Kleckner, N., Chan, R. K., Tye, B.-K., and Botstein, D. (1975) Mutagenesis by insertion of a drug-resistance element carrying an inverted repetition. J. Mol. Biol. 97, 561–575.

    Article  PubMed  CAS  Google Scholar 

  42. Hedges, R. W. and Jacob, A. (1974) Transposition of ampicillin resistance from RP4 to other replicons. Mol. Gen. Genet. 132, 31–40.

    Article  PubMed  CAS  Google Scholar 

  43. Reznikoff, W. S. (2002) Tn5 transposition, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds.), ASM Press, Washington, DC, pp. 403–422.

    Google Scholar 

  44. Haniford, D. B. (2002) Transposon Tn10, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds.), ASM Press, Washington, DC, pp. 457–483.

    Google Scholar 

  45. Lorenzo, V de, Herrero, M., Jakubzik, U., and Timmis, K. N. (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative bacteria. J. Bacteriol. 172, 6568–6572.

    PubMed  Google Scholar 

  46. Allmeier, H., Cresnar, B., Greck, M., and Schmitt, R. (1992) Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111, 11–20.

    Article  PubMed  CAS  Google Scholar 

  47. Nakatsu, C., Ng, J., Singh, R., Straus, N., and Wyndham, C. (1991) Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc. Nat. Acad. Sci. USA 88, 8312–8316.

    Article  PubMed  CAS  Google Scholar 

  48. Bennett, P. M. (1989) Bacterial transposons and transposition: flexibility and limitations, in Genetic Transformation and Expression (Butler, L. O., Harwood, C., and Moseley, B. E. B., eds.), Intercept, Andover, UK, pp. 283–303.

    Google Scholar 

  49. Dobritsa, A. P., Dobritsa, S. V., Popov, E. I., and Fedoseeva, V. B. (1981) Transposition of DNA fragment flanked by two inverted Tn1 sequences. Gene 14, 217–225.

    Article  PubMed  CAS  Google Scholar 

  50. Lederberg, E. M. (1981) Plasmid reference centre registry of transposon (Tn) allocations through July 1981. Gene 16, 59–61.

    Article  PubMed  CAS  Google Scholar 

  51. Jordan, E., Saedler, H., and Starlinger, P. (1968) 0° and strong polar mutations in the gal operon are insertions. Mol. Gen. Genet. 102, 353–365.

    Article  PubMed  CAS  Google Scholar 

  52. Shapiro, J. A. (1969) Mutations caused by the insertion of genetic material into the galactose operon of E. coli. J. Mol. Biol. 40, 93–105.

    Article  PubMed  CAS  Google Scholar 

  53. Malamy, M. H. (1970) Some properties of insertion mutations in the lac operon, in The Lactose Operon (Beckwith, J. R. and Zipser, D., eds.), Cold Spring Harbor Laboratory, p. 359.

    Google Scholar 

  54. Habermann, P. and Starlinger, P. (1982) Bidirectional deletions associated with IS4. Mol. Gen. Genet. 185, 216–222.

    Article  PubMed  CAS  Google Scholar 

  55. Reif, H. J. and Saedler, H. (1975) IS1 is involved in deletion formation in the gal region of E. coli K12. Mol. Gen. Genet. 137, 17–28.

    PubMed  CAS  Google Scholar 

  56. Saedler, H., Reif, H. J., Hu, S., and Davidson, N. (1974) IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Mol. Gen. Genet. 132, 265–289.

    Article  CAS  Google Scholar 

  57. Starlinger, P. (1980) IS elements and transposons. Plasmid 3, 241–259.

    Article  PubMed  CAS  Google Scholar 

  58. Sekine, Y. and Ohtsubo, E. (1989) Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc. Nat. Acad. Sci. USA 86, 4609–4613.

    Article  PubMed  CAS  Google Scholar 

  59. Sekine, Y., Eisaki, N., and Ohtsubo, E. (1994) Translational control in production of transposase and in transposition of insertion sequence IS 3. J Mol. Biol. 235, 1406–1420.

    Article  PubMed  CAS  Google Scholar 

  60. Chalmers, R. M. and Kleckner, N. (1994) Tn10/IS10 transposase purification, activation, and in vitro reaction. J. Biol. Chem. 269, 8029–8035.

    PubMed  CAS  Google Scholar 

  61. Weinreich, M. D., Mahnke-Braam, L., and Reznikoff, W. S. (1994) A functional analysis of the Tn5 transposase: identification of domains required for DNA binding and multimerization. J. Mol. Biol. 241, 166–177.

    Article  PubMed  CAS  Google Scholar 

  62. Mendiola, M. V., Jubete, Y., and de la Cruz, F. (1992) DNA sequence of IS91 and identification of the transposase gene. J. Bacteriol. 174, 1345–1351.

    PubMed  CAS  Google Scholar 

  63. Derbyshire, K. M. and Grindley, N. D. (1992) Binding of the IS903 transposase to its inverted repeat in vitro. EMBO J. 11, 3449–3455.

    PubMed  CAS  Google Scholar 

  64. Johnsrud, L. (1979) DNA sequence of the transposable element IS1. Mol. Gen. Genet. 169, 213–218.

    Article  PubMed  CAS  Google Scholar 

  65. Ohtsubo, H. and Ohtsubo, E. (1978) Nucleotide sequence of an insertion element, IS1. Proc. Nat. Acad. Sci. USA 75, 615–619.

    Article  PubMed  CAS  Google Scholar 

  66. Escoubas, J. M., Prère, M. F., Fayet, O., Salvignol, I., Galas, D., Zerbib, D., et al. (1991) Translational control of transposition activity of the bacterial insertion sequence IS1. EMBO J. 10, 705–712.

    PubMed  CAS  Google Scholar 

  67. Zerbib, D., Prentki, P., Gamas, P., Freund, E., Galas, D. J., and Chandler, M. (1990) Functional organization of the ends of IS1: specific binding site for an IS1-encoded protein. Mol. Microbiol. 4, 1477–1486.

    Article  PubMed  CAS  Google Scholar 

  68. Machida, C. and Machida, Y. (1989) Regulation of IS1 transposition by the insA gene product. J. Mol. Biol. 208, 567–574.

    Article  PubMed  CAS  Google Scholar 

  69. Chandler, M. and Fayet, O. (1993) Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7, 497–503.

    Article  PubMed  CAS  Google Scholar 

  70. Grindley, N. D. (1978) IS1 insertion generates duplication of a nine base pair sequence at its target site. Cell 13, 419–426.

    Article  PubMed  CAS  Google Scholar 

  71. Grindley, N. D. F. (1983) Transposition of Tn3 and related transposons. Cell 32, 3–5.

    Article  PubMed  CAS  Google Scholar 

  72. Tavakoli, N., Comanducci, A., Dodd, H. M., Lett, M. C., Albiger, B., and Bennett, P. M. (2000) IS1294, a DNA element that transposes by RC transposition. Plasmid 44, 66–84.

    Article  PubMed  CAS  Google Scholar 

  73. Mendiola, M. V., Bernales, I., and de la Cruz, F. (1994) Differential roles of the transposon termini in IS91 transposition. Proc. Nat. Acad. Sci. USA 91, 1922–1926.

    Article  PubMed  CAS  Google Scholar 

  74. Craig, N. L. (1995) Unity in transposition reactions. Science 270, 253–254.

    Article  PubMed  CAS  Google Scholar 

  75. Ton-Hoang, B., Polard, P., and Chandler, M. (1998) Efficient transposition of IS911 circles in vitro. EMBO J. 17, 1169–1181.

    Article  PubMed  CAS  Google Scholar 

  76. Polard, P., Prère, M.-F., Fayet, O., and Chandler, M. (1992) Transposase-induced excision and circularization of the bacterial insertion sequence IS911. EMBO J. 11, 5079–5090.

    PubMed  CAS  Google Scholar 

  77. Polard, P., Prère, M.-F., Chandler, M., and Fayet, O. (1991) Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J. Mol. Biol. 222, 465–477.

    Article  PubMed  CAS  Google Scholar 

  78. Ton-Hoang, B., Betermier, M., Polard, P., and Chandler, M. (1997) Assembly of a strong promoter following IS911 circularization and the role of circles in transposition. EMBO J. 16, 3357–3371.

    Article  PubMed  CAS  Google Scholar 

  79. Richter, G. Y., Björklöf, K., Romantschuk, M., and Mills, D. (1998) Insertion specificity and trans-activation of IS801. Mol. Gen. Genet. 260, 381–387.

    Article  PubMed  CAS  Google Scholar 

  80. Díaz-Aroca, E., Mendiola, M. V., Zabala, J. C., and de la Cruz, F. (1987) Transposition of IS91 does not generate a target duplication. J. Bacteriol. 169, 442–443.

    PubMed  Google Scholar 

  81. Mendiola, M. V. and de la Cruz, F. (1992) IS91 transposase is related to the rolling-circle-type replication proteins of the pUB110 family of plasmids. Nucl. Acids Res. 20, 3521.

    Article  PubMed  CAS  Google Scholar 

  82. Comanducci, A., Dodd, H. M., and Bennett, P. M. (1989) pUB2380: an R plasmid encoding a unique, natural one-ended transposition system, in Genetic Transformation and Expression (Butler, L. O., Harwood, C., and Moseley, B. E. B., eds.), Intercept, Andover, UK, pp. 305–311.

    Google Scholar 

  83. Poirel, L., Decousser, J.-W., and Nordmann, P. (2003) Insertion sequence ISEcp1B is involved in expression and mobilization of a bla CTX-M β-lactamase gene. Antimicrob. Agents Chemother. 47, 2938–2945.

    Article  PubMed  CAS  Google Scholar 

  84. Chalmers, R., Sewitz, K., Lipkow, K., and Crellin, P. (2000) Complete nucleotide sequence of Tn10. J. Bacteriol. 182, 2970–2972.

    Article  PubMed  CAS  Google Scholar 

  85. Reznikoff, W. S. (1993) The Tn5 transposon. Ann. Rev. Microbiol. 47, 945–963.

    Article  CAS  Google Scholar 

  86. Oka, A., Sugisaki, H., and Takanami, M. (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J. Mol. Biol. 147, 217–226.

    Article  PubMed  CAS  Google Scholar 

  87. Grindley, N. D. and Joyce, C. M. (1980) Genetic and DNA sequence analysis of the kanamycin resistance transposon Tn903. Proc. Nat. Acad. Sci. USA 77, 7176–7180.

    Article  PubMed  CAS  Google Scholar 

  88. Krebs, M. P. and Reznikoff, W. S. (1986) Transcriptional and translational sites of IS50. Control of transposase and inhibitor expression. J. Mol. Biol. 192, 781–791.

    Article  PubMed  CAS  Google Scholar 

  89. Kleckner, N., Chalmers, R. M., Kwon, D., Sakai, J., and Bolland, S. (1996) Tn10 and IS10 transposition and chromosome rearrangements; mechanism and regulation in vivo and in vitro. Curr. Topic. Microbiol. Immunol. 204, 49–82.

    CAS  Google Scholar 

  90. Derbyshire, K. M., Kramer, M., and Grindley, N. D. (1990) Role of instability in the cis action of the insertion sequence IS903 transposase. Proc. Nat. Acad. Sci. USA 87, 4048–4052.

    Article  PubMed  CAS  Google Scholar 

  91. Heffron, F., McCarthy, B. J., Ohtsubo, H., and Ohtsubo, E. (1979) DNA sequence analysis of the transposon Tn3: three genes and three sites involved in transposition of Tn3. Cell 18, 1153–1163.

    Article  PubMed  CAS  Google Scholar 

  92. Mahillon, J. and Lereclus, D. (1988) Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate resolution process. EMBO J. 7, 1515–1526.

    PubMed  CAS  Google Scholar 

  93. Gill, R. E., Heffron, F., and Falkow, S. (1979) Identification of the protein encoded by the transposable element Tn3 which is required for its transposition. Nature 282, 797–801.

    Article  PubMed  CAS  Google Scholar 

  94. Shapiro, J. A. (1979) Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Nat. Acad. Sci. USA 76, 1933–1937.

    Article  PubMed  CAS  Google Scholar 

  95. Arthur, A. and Sherratt, D. J. (1979) Dissection of the transposition process. Mol. Gen. Genet. 175, 267–274.

    Article  PubMed  CAS  Google Scholar 

  96. Heritage, J. and Bennett, P. M. (1985) Plasmid fusions mediated by one end of TnA. J. Gen. Microbiol. 131, 1131–1140.

    CAS  Google Scholar 

  97. Avila, P., de la Cruz, F., Ward, E., and Grinsted, J. (1984) Plasmids containing one inverted repeat of Tn21 can fuse with other plasmids in the presence of Tn21 transposase. Mol. Gen. Genet. 195, 288–293.

    Article  PubMed  CAS  Google Scholar 

  98. Mötsch, S. and Schmitt, R. (1984) Replicon fusion mediated by a single-ended derivative of transposon Tn1721. Mol. Gen. Genet. 195, 281–287.

    Article  PubMed  Google Scholar 

  99. Robinson, M. K., Bennett, P. M., and Richmond, M. H. (1977) Inhibition of TnA translocation by TnA. J. Bacteriol. 129, 407–414.

    PubMed  CAS  Google Scholar 

  100. Lee, C.-H., Bhagwhat, A., and Heffron, F. (1983) Identification of a transposon Tn3 sequence required for transposition immunity. Proc. Nat. Acad. Sci. USA 80, 6765–6769.

    Article  PubMed  CAS  Google Scholar 

  101. Arciszewska, L. K., Drake, D., and Craig, N. L. (1989) Transposon Tn7 cis-acting sequences in transposition and transposition immunity. J. Mol. Biol. 207, 35–52.

    Article  PubMed  CAS  Google Scholar 

  102. Mizuuchi, K. (1992) Transpositional recombination: mechanistic insights from studies of Mu and other elements. Ann. Rev. Biochem. 61, 1011–1051.

    Article  PubMed  CAS  Google Scholar 

  103. Stokes, H. W. and Hall, R. M. (1989) A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3, 1669–1683.

    Article  PubMed  CAS  Google Scholar 

  104. Recchia, G. D. and Hall, R. M. (1995) Gene cassettes: a new class of mobile element. Microbiol. 141, 3015–3027.

    Article  CAS  Google Scholar 

  105. Bennett, P. M. (1999) Integrons and gene cassettes: a genetic construction kit for bacteria. J. Antimicrob. Chemother. 43, 1–4.

    Article  PubMed  CAS  Google Scholar 

  106. Stokes, H. W., Gorman, D. B., Recchia, G. D., Parsekhian, M., and Hall, R. M. (1997) Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol. Microbiol. 26, 731–745.

    Article  PubMed  CAS  Google Scholar 

  107. Naas, T., Mikami, Y., Imai, T., Poirel, L., and Nordmann, P. (2001) Characterization of In53, a class 1 plasmid-and composite-transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J. Bacteriol. 183, 235–249.

    Article  PubMed  CAS  Google Scholar 

  108. Rowe-Magnus, D. A., Guerout, A. M., and Mazel, D. (1999) Super-integrons. Res. Microbiol. 150, 641–651.

    Article  PubMed  CAS  Google Scholar 

  109. Mazel, D., Dychinco, B., Webb, V. A., and Davies, J. (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280, 605–608.

    Article  PubMed  CAS  Google Scholar 

  110. Nield, B. S., Holmes, A. J., Gillings, M. R., Recchia, G. D., Mabbutt, B. C., Nevalainen, et al. (2001) Recovery of new integron classes from environmental DNA. FEMS Microbiol. Lett. 195, 59–65.

    Article  PubMed  CAS  Google Scholar 

  111. Rowe-Magnus, D. A., Guerout, A. M., Ploncard, P., Dychinco, B., Davies, J., and Mazel, D. (2001) The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc. Nat. Acad. Sci. USA 98, 652–657.

    Article  PubMed  CAS  Google Scholar 

  112. Vaisvila, R., Morgan, R. D., Posfai, J., and Raleigh, E. A. (2001) Discovery and distribution of super-integrons among pseudomonads. Mol. Microbiol. 42, 587–601.

    Article  PubMed  CAS  Google Scholar 

  113. Hansson, K., Sundstrom, L., Pelletier, A., and Roy, P. H. (2002) IntI2 integron integrase in Tn7. J. Bacteriol. 184, 1712–1721.

    Article  PubMed  CAS  Google Scholar 

  114. Collis, C. M., Kim, M. J., Partridge, S. R., Stokes, H. W., and Hall, R. M. (2002) Characterization of the class 3 integron and the site-specific recombination system it determines. J. Bacteriol. 184, 3017–3026.

    Article  PubMed  CAS  Google Scholar 

  115. Walsh, T. R., Toleman, M. A., Hryniewicz, W., Bennett, P. M., and Jones, R. N. (2003) Evolution of an integron carrying bla VIM-2 in Eastern Europe: report from the SENTRY antimicrobial surveillance program. J. Antimicrob. Chemother. 52, 116–119.

    Article  PubMed  CAS  Google Scholar 

  116. Clewell, D. B. and Gawron-Burke, C. (1986) Conjugative transposons and the dissemination of antibiotic resistance. Ann. Rev. Microbiol. 40, 635–659.

    Article  CAS  Google Scholar 

  117. Salyers, A. A., Shoemaker, N. B., and Li, L. Y. (1995) In the driver’s seat: the Bacteroides conjugative transposons and the elements they mobilize. J. Bacteriol. 177, 5727–5731.

    PubMed  CAS  Google Scholar 

  118. Osborn, A. M. and Böltner, D. (2002) When Phage, plasmids, and transposons collide: genomic islands, and conjugative-and mobilizable-transposons as a mosaic continuum. Plasmid 48, 202–212.

    Article  PubMed  Google Scholar 

  119. Böltner, D. and Osborn, A. M. (2004) Structural comparison of the integrative and conjugative elements R391, pMERPH, R997, and SXT. Plasmid 51, 12–23.

    Article  PubMed  CAS  Google Scholar 

  120. Hochhut, B., Lotfi, Y., Mazel, D., Faruque, S. M., Woodgate, R., and Waldor, M. K. (2001) Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45, 2991–3000.

    Article  PubMed  CAS  Google Scholar 

  121. Beaber, J. W., Burrus, V., Hochhut, B., and Waldor, M. K. (2002) Comparison of SXT and R391, two conjugative integrating elements: definition of a genetic backbone for the mobilization of resistance determinants. Cell. Molec. Life Sci. 59, 2065–2070.

    Article  PubMed  CAS  Google Scholar 

  122. Franke, A. E. and Clewell, D. B. (1981) Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of conjugative transfer in the absence of a conjugative plasmid. J. Bacteriol. 145, 494–502.

    PubMed  CAS  Google Scholar 

  123. Churchward, G. (2002) Conjugative transposons and related mobile elements, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M, eds.), ASM Press, Washington, DC, pp. 177–191.

    Google Scholar 

  124. Flannagan, S. E., Zitzow, L. A., Su, Y. A., and Clewell, D. B. (1994) Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32, 350–354.

    Article  PubMed  CAS  Google Scholar 

  125. Senghas, E., Jones, J. M., Yamamoto, M., Gawron-Burke, C., and Clewell, D. B. (1988) Genetic organization of the bacterial conjugative transposon Tn916. J. Bacteriol. 170, 245–249.

    PubMed  CAS  Google Scholar 

  126. Storrs, M. J., Carlier, C., Poyart-Salmeron, C., Trieu-Cuot, P., and Courvalin, P. (1991) Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J. Bacteriol. 173, 4347–4352.

    PubMed  CAS  Google Scholar 

  127. Craig, N. L. (1988) The mechanism of conservative site-specific recombination. Ann. Rev. Genet. 22, 77–105.

    Article  PubMed  CAS  Google Scholar 

  128. Nash, H. A. (1981) Integration and excision of bacteriophage lambda: the mechanism of conservative site specific recombination. Ann. Rev. Genet. 15, 143–167.

    Article  PubMed  CAS  Google Scholar 

  129. Craig, N. L. (1997) Target site selection in transposition. Ann. Rev. Biochem. 66, 437–474.

    Article  PubMed  CAS  Google Scholar 

  130. Craig, N. L. (1991) Tn7: a target site-specific transposon. Mol. Microbiol. 5, 2569–2573.

    Article  PubMed  CAS  Google Scholar 

  131. Gay, N. J., Tybulewicz, V. L., and Walker, J. E. (1986) Insertion of transposon Tn7 into the Escherichia coli glmS transcriptional terminator. Biochem. J. 234, 111–117.

    PubMed  CAS  Google Scholar 

  132. Craig, N. L. (2002) Tn7, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds.), ASM Press, Washington, DC, pp. 423–456.

    Google Scholar 

  133. Bainton, R. J., Kubo, K. M., Feng, J.-N., and Craig, N. L. (1993) Tn7 transposition: target DNA recognition is mediated by multiple Tn7-encoded proteins in a purified in vitro system. Cell 72, 931–943.

    Article  PubMed  CAS  Google Scholar 

  134. Bainton, R., Gamas, P., and Craig, N. L. (1991) Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65, 805–816.

    Article  PubMed  CAS  Google Scholar 

  135. Stanisich, V. A., Arwas, R., Bennett, P. M., and de la Cruz, F. (1989) Characterization of Pseudomonas mercury-resistance transposon Tn502, which has a preferred insertion site in RP1. J. Gen. Microbiol. 135, 2909–2915.

    PubMed  CAS  Google Scholar 

  136. Carmo de Freire Bastos, M. D. and Murphy, E. (1988) Transposon Tn544 encodes three products required for transposition. EMBO J. 7, 2935–2941.

    Google Scholar 

  137. Murphy, E. and Lofdahl, S. (1984) Transposition of Tn544 does not generate a target duplication. Nature 307, 292–295.

    Article  PubMed  CAS  Google Scholar 

  138. Pato, M. L. (1989) Bacteriophage Mu, in Mobile DNA (Berg, D. E. and Howe, M. M., eds.), ASM Press, Washington, DC, pp. 23–52.

    Google Scholar 

  139. Hacker, J. and Kaper, J. B. (2000) Pathogenicity islands and the evolution of microbes. Ann. Rev. Microbiol. 54, 641–679.

    Article  CAS  Google Scholar 

  140. Davis, B. M. and Waldor, M. K. (2002) Mobile genetic elements and bacterial pathogenesis, in Mobile DNA II (Craig, N. L., Craigie, R., Gellert, M., and Lambowitz, A. M., eds.), ASM Press, Washington, DC, pp. 1040–1059.

    Google Scholar 

  141. Lindsay, J. A., Ruzin, A., Ross, H. F., Kurepina, N., and Novick, R. P. (1998) The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29, 527–543.

    Article  PubMed  CAS  Google Scholar 

  142. Karaolis, D. K. R., Somara, S., Maneval, D. R. Jr., Johnson, J. A., and Kaper, J. B. (1999) A bacteriophage encoding a pathogenicity island, a type IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379.

    Article  PubMed  CAS  Google Scholar 

  143. Rankin, A., Schubert, S., Pelludat, C., Brem, D., and Hessemann, J. (1999) The high-pathogenicity island of Yersinia, in Pathogenicity Islands and Other Mobile Virulence Elements (Kaper, J. B. and Hacker, J., eds.), ASM Press, Washington, DC, pp. 77–90.

    Google Scholar 

  144. Hiramatsu, K., Cui, L., Kuroda, M., and Ito, T. (2001) The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9, 486–493.

    Article  PubMed  CAS  Google Scholar 

  145. Ma, X. X., Ito, T., Tiensasitorn, C., Jamklang, M., Chongtrakool, P., Boyle-Vavra, S., et al. (2002) Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 46, 1147–1152.

    Article  PubMed  CAS  Google Scholar 

  146. Katayama, Y., Ito, T., and Hiramatsu, K. (2000) A new class of genetic element, Staphylococcus Cassette Chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44, 1549–1555.

    Article  PubMed  CAS  Google Scholar 

  147. Katayama, Y., Takeuchi, F., Ito, T., Ma, X. X., Ui-Mizutani, Y., Kobayashi, I., and Hiramatsu, K. (2003) Identification in methicillin-susceptible Staphylococcus hominis of an active primordial mobile genetic element for the staphylococcal cassette chromosome mec of methicillin-resistant Staphylococcus aureus. J. Bacteriol. 185, 2711–2722.

    Article  PubMed  CAS  Google Scholar 

  148. Groisman, E. A. and Casadaban, M. J. (1986) Mini-Mu bacteriophage with plasmid replicons for in vivo cloning and lac gene fusions. J. Bacteriol. 168, 357–364.

    PubMed  CAS  Google Scholar 

  149. Van Gijsegem, F. and Toussaint, A. (1982) Chromosome transfer and R-prime formation by an RP4::mini-Mu derivative in Escherichia coli, Salmonella typhimurium, Klebsiella pneumoniae, and Proteus mirabilis. Plasmid 7, 30–44.

    Article  PubMed  Google Scholar 

  150. Koch, C., Mertens, G., Rudt, F., Kahmann, R., Kanaar, R., Plasterk, R. H., et al. (1987) The invertible G segment, in Phage Mu (Symonds, N., Toussaint, A., van de Putte, P., and Howe, M. M., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 75–91.

    Google Scholar 

  151. Toussaint, A., Lefebvre, N., Scott, J. R., Cowan, J. A., de Bruijn, F., and Bukhari, A. I. (1978) Relationships between temperate phages Mu and P1. Virology 89, 146–161.

    Article  PubMed  CAS  Google Scholar 

  152. Zieg, J. and Simon, M. (1980) Analysis of the nucleotides sequence of an invertible controlling element. Proc. Nat. Acad. Sci. USA 77, 4196–4200.

    Article  PubMed  CAS  Google Scholar 

  153. Sharp, P. A., Cohen, S. N., and Davidson, N. (1973) Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli II. Structure of drug resistance (R) factors and F factors. J. Mol. Biol. 75, 235–255.

    Article  PubMed  CAS  Google Scholar 

  154. Rownd, R. and Mickel, S. (1971) Dissociation and reassociation of RTF and r-determinant of the R-factor NR1 in Proteus mirabilis. Nature New Biol. 234, 40–43.

    Article  PubMed  CAS  Google Scholar 

  155. Clowes, R. C. (1972) Molecular structure of bacterial plasmids. Bacteriol. Rev. 36, 361–405.

    PubMed  CAS  Google Scholar 

  156. Bennett, P. M. and Richmond, M. H. (1978) Plasmids and their possible influence on bacterial evolution, in The Bacteria: A Treatise on Structure and Function (Gunsalus, I. C., ed.), Academic Press, NY, pp. 1–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Bennett, P.M. (2004). Genome Plasticity. In: Woodford, N., Johnson, A.P. (eds) Genomics, Proteomics, and Clinical Bacteriology. Methods in Molecular Biology™, vol 266. Humana Press. https://doi.org/10.1385/1-59259-763-7:071

Download citation

  • DOI: https://doi.org/10.1385/1-59259-763-7:071

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-218-6

  • Online ISBN: 978-1-59259-763-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics