Skip to main content
Log in

Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Essential elements, mainly selenium and zinc, were involved in protection against oxidative stress in cells. Oxidation could lead to the formation of free radicals that have been implicated in the pathogenesis of many diseases, including leukemia. Leukemia is a neoplastic disease that is susceptible to antioxidant enzyme and essential elements alterations. This study was undertaken to examine the levels of essential elements, antioxidant enzymes activities, and their relationships with different types of leukemia. Serum selenium, zinc, and copper concentrations, red blood cell glutathione peroxidase (GPx) activities, plasma Cu−Zn superoxide dismutase (Cu−Zn SOD) activities and lipid peroxidation (LPO) levels were determined in 49 patients with different types of leukemia before initial treatment. Serum selenium and zinc concentrations were lower in leukemia patients than those of controls (p<0.01). Serum copper concentration was higher in leukemia patients than that of controls (p<0.01). The activities GPx and Cu−Zn SOD were significantly increased in leukemia patients, especially with acute leukemia (AL), acute lymphoid leukemia (ALL), and acute nonlymphoid leukemia (ANLL) (p<0.05), whereas no difference was found between those of chronic myelogeneous leukemia and the controls. The levels of LPO were normal as controls. Serum selenium concentration was not correlated with GPx, and serum levels of zinc and copper were not related to Cu−Zn SOD. Serum zinc levels had a negative correlation with the absolute peripheral blast cells, whereas serum copper had a positive correlation with the absolute peripheral blast cells. Increased GPx and Cu−Zn SOD activities and normal levels of LPO, which were a protective responses, were an indicator of mild oxidative stress; it mights indicate that the essentials elements alterations in leukemia patients were mostly dependent on tumor activity. Changes of their levels demonstrated that there are low selenium, zinc, and high copper status in leukemia patients. The decrease of plasma zinc and increase of the Cu/Zn ratio could be the index that showed an unfavorable prognosis of acute leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. El-Bayoumy, The protective role of Se on genetic damage and on cancer, Mutat. Res. 475(1–2), 123–139 (2000).

    Google Scholar 

  2. Y. S. Kim and J. Milner, Molecular targets for Se in cancer prevention, Nutr. Cancer 40(1), 50–54 (2001).

    Article  PubMed  CAS  Google Scholar 

  3. M. P. Rayman, The argument for increasing Se intake, Proc. Nutr. Soc. 61(2), 1203–215 (2002).

    Article  CAS  Google Scholar 

  4. F. J. kok, A. M. Bruijn, A. Hofman, R. Vermeeren and H. A. Valkenburg, Is Se a risk factor for cancer in men only?, Am. J. Epidemiol 6(1), 12–16 (1987).

    Google Scholar 

  5. Ŝ. Gürses, A. M. Ulya, D. Feride, B. Dilek, and Y. Nazmiye, High prevalence of chronic magnesium deficiency in T cell lymphoblastic leukemia and chronic zinc deficiency in children with acute lymphoblastic leukemia and malignants lymphoma, Leuk. Lymph. 39(5–6), 555–562 (2000).

    Google Scholar 

  6. A. M. Olter, F. Carbonell, C. Tormos, A. Iradi, and G. T. Saez, Antioxidant enzyme activities and the production of MDA and 8-oxo-dGin chronic lymphocytic leukemia, Free Radical Biol. Med. 30(11), 1286–1292 (2001).

    Article  Google Scholar 

  7. N. Bakan, S. Taysi, Ö. Yilmaz, et al., Glutathione peroxidase, glutathione redutase, Cu−Zn superoxide dismutase activities, glutathione, nitric oxide, and malodialdehyde concentrations in serum of patients with chronic lymphocytic leukemia, Clin. Chim. Acta 338(1–2), 143–149 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. H. K. Wong, J. Riondel, V. Ducros, B. Ballester, J. Mathieu, and A. Favier, Effects of selenium supplementation on malignant lymphoproliferative pathologies associated with OF1 mouse ageing, Anticancer Res. 21(1A), 393–402 (2001).

    PubMed  CAS  Google Scholar 

  9. G. S. Devi, M. H. Prasad, I. Sarawathi, S. D. Raghu, D. N. Rao, and P. P. Reddy, Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias, Clin. Chim. Acta 293(1–2), 53–62, (2000).

    Article  PubMed  CAS  Google Scholar 

  10. J. M. Bennett, D. Catovsky, and M. T. Daniel, Proposed revised criteria for the classification of acute myeloid leukemia, Ann. Intern. Med 103(4), 626–629 (1985).

    Google Scholar 

  11. K. Ishigame and Y. Nishi, Superoxide dismutase activity and zinc, copper, and manganese concentrations in leukocytes, Clin. Chem. 31(6), 1094–1095 (1985).

    PubMed  CAS  Google Scholar 

  12. D. G. Hafeman, R. A. Sunde, and W. G. Hoekstra, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104(5), 580–587 (1974).

    PubMed  CAS  Google Scholar 

  13. International Committee for Standardization in Hematology, Recommendations for reference method for haemoglobinometry in human blood and specifications for international hemoglobin cyanide reference preparation, J. Clin. Pathol. 31, 139 (1978).

    Article  Google Scholar 

  14. Y. J. Wang and Y. Y. Zhuang, The determinational of plasma Cu−Zn superoxide dismutase activities, Prog. Biochem. Biophys. 17(6), 237–238 (1990).

    Google Scholar 

  15. V. C. Gavino, J. S. Miller, S. O. Ikharebha, G. E. Milo, and D. G. Cornwall. Effects of polyunsaturated fatty acids and antioxidants on lipid peroxidation in tissue cultures, J. Lipid Res. 22, 763–769 (1981).

    PubMed  CAS  Google Scholar 

  16. J. R. Arthur, R. C. McKenzie, and G. J. Beckett, Selenium in the immune system, J. Nutr. 135(5 Suppl. 1), 1457s-1459s (2003).

    Google Scholar 

  17. Y. Beguin, V. Bours, J. M. Delbrouck, et al., Relationship of serum selenium levels to tumor activity in acute non-lymphocytic leukemia, Carcinogenesis 10(11) 2089–2091 (1989).

    Article  PubMed  CAS  Google Scholar 

  18. A. Pazirandeh, N. M. Assadi, and P. Vossogh, Determination of selenium in blood serum of children with acute leukemia and effect of chemotherapy on serum selenium level, J. Trace Elements Med. Biol. 13(4), 242–246 (1999).

    CAS  Google Scholar 

  19. Y. Beguin, F. Brasseur, G. Weber, ea al., Observation of serum trance elements in chronic lymphocytic leukemia, Cancer 60(15), 1842–1846, (1987).

    Article  PubMed  CAS  Google Scholar 

  20. C. L. Keen, Zinc deficiency and immume function, Annu. Rev. Nutr. 10, 415–431 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. H. P. Field, R. Jones, B. E. Walker, J. Kelleher, and A. V. Simmons, Leucocyte zinc in non-Hodgkin's lymphoma and Hodgkin's disease, Nutr. Cancer 11(2), 83–92 (1988).

    Article  PubMed  CAS  Google Scholar 

  22. U. Carpentieri, J. Myers, L. Thorpe, C. W. Daeschner, and M. E. Haggard, Copper, zinc and iron in normal and leukemic lymphocytes from children, Cancer Res. 46(2), 981–984 (1986).

    PubMed  CAS  Google Scholar 

  23. C. G. Wen, G. Y. Pang, S. Q. Huang, and Y. M. Yu, Significance of the level of serum Cu, Zn, Mn, Cr and Ni in acute leukemia, Zhong Hua Ne Ke Zha Zhi 28(12), 734–736 (1989).

    CAS  Google Scholar 

  24. Z. J. Hu, X. Y. Shen, S. G. Zhang, L. Huang, and L. Y. Ping, Study on erythrocyte-copper, zinc-superoxide dismutate and serum copper, zinc in acute leukemia, Zhong Hua Xue Ye Xue Zha Zhi 13(10, 528–530 (1992).

    Google Scholar 

  25. R. J. Kanter, K. R. Rai, F. Muniz, B. Michael, J. Balkon, and A. Sawitsky, Intracellular zinc in chronic lymphocytic leukemia, Clin. Immunol. Immunopathol. 24(1), 26–32 (1982).

    Article  PubMed  CAS  Google Scholar 

  26. M. D. Harrison, C. E. Jones, M. Solioz, and C. T. Dameron, Intracellular copper routing: the role of copper chaperones, Trends Biochem. Sci. 25(1), 29–32 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. Y. Sun, Free radicals, antioxidant enzymes, and carcinogenesis, Free Radical Biol. Med. 8(6), 583–599 (1990).

    Article  CAS  Google Scholar 

  28. S. Senturker, B. Karahalil, M. Inal, et al., Oxidative DNA base damage and antioxidant enzyme levels in childhool acute lymphoblastic leukemia, FEBS Lett. 416(3), 286–290 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. M. Kato, H. Minakami, M. Kuroiwa, et al., Superoxide radical generation and Mn- and Cu−Zn superoxide dismutase activities in human leukemic cells, Hematol. Oncol. 21(1, 11–16 (2003).

    Article  PubMed  Google Scholar 

  30. A. Mazzone, G. Ricevuti, G. Ricevuti, S. C. Rizzo, and S. Sacchi, The probable role of superoxide produced by blast cells in leukemic cutaneous spreading, Int. J. Tissue React. 8(6), 493–496 (1986).

    PubMed  CAS  Google Scholar 

  31. A. M. Oltea, F. Carbonell, C. Tormos, A. Iradi, and G. T. Saez, Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia, Free Radic. Biol. Med. 30(11), 1286–1292 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, X.L., Chen, J.M., Zhou, X. et al. Levels of selenium, zinc, copper, and antioxidant enzyme activity in patients with leukemia. Biol Trace Elem Res 114, 41–53 (2006). https://doi.org/10.1385/BTER:114:1:41

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:114:1:41

Index Entries

Navigation