Skip to main content
Log in

Weak relationship between ionized and total magnesium in serum of patients requiring magnesium status

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Measurement and monitoring of magnesium (Mg) are important to prevent the development of serious and potentially fatal complications in critically ill patients. Although ion-selective electrodes are available and earlier reports suggest that free ionized magnesium (iMg2+) is the most useful test to estimate Mg status, most clinical laboratories still only measure total Mg. To compare the relationship among iMg2+, total Mg, and albumin in serum, samples were collected from 48 consecutive patients admitted to an intensive care unit or a primary health center. The mean serum level of iMg2+ in 44 patients was 0.53 mmol/L, the total Mg was 0.06 mmol/L, and the albumin was 34.93 g/L. The correlation between iMg2+ and total Mg in serum was r=0.585; the correlation between iMg2+ and albumin in serum was r=378; and the correlation between total Mg and albumin in serum was r=0.340. The mean percent iMg2+ in relation to total Mg in serum was calculated to be 55% in the patient samples. The important level of biologically active iMg2+ was not reflected upon analysis of total Mg in 25% of consecutive patients. This report shows that the correlation of iMg2+ and total Mg is weak, not only in critically ill patients but also in patients in whom Mg status is inquired as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Fawcett, E. J. Haxby, and D. A. Male, Magnesium: physiology and pharmacology, Br. J. Anesth. 83, 302–320 (1999).

    CAS  Google Scholar 

  2. G. T. Sanders, H. J. Huijgen, and R. Sanders, Magnesium in disease: a review with special emphasis on the serum ionized magensium, Clin. Chem. Lab. Med. 37, 2011–2033 (1999).

    Google Scholar 

  3. N.-E. L. Saris, E. Mervaala, H. Karppanen, J. A. Khawaja, and A. Lewenstam, Magnesium: an update on physiological, clinical and analytical aspects, Clin. Chim. Acta 294, 1–26 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. J. M. Topf and P. T. Murray, Hypomagnesemia and hypermagnesemia, Rev. Endocr. Metab. Dis. 4, 195–206 (2003).

    Article  Google Scholar 

  5. M. S. Seelig and R. J. Elin, Reexamination of magnesium infusion in myocardial infarction, Am. J. Cardiol. 76, 172–173 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. D. Downing, Is ISIS-4 research misconduct? J. Nutr. Environ. Med. 9, 5–13 (1999).

    Article  Google Scholar 

  7. M. Shechter, C. N. B. Merz, M. Paul-Labrador, et al., Oral magnesium supplementation inhibits platelet-dependent thrombosis in patients with coronary artery disease, Am. J. Cardiol. 84, 152–156 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. P. A. Whiss and R. G. G. Andersson, Divalent cations and the protein surface coordinate the intensity of human platelet adhesion and P-selectin surface expression, Blood Coagul. Fibrinol. 13, 407–416 (2002).

    Article  CAS  Google Scholar 

  9. H. J. Huijgen, H. E. van Ingen, W. T. Kok, and G. T. Sanders, Magnesium fractions in serum of healthy individuals and CAPD patients, measured by an ion-selective electrode and ultrafiltration, Clin. Biochem. 29, 261–266 (1996).

    Article  PubMed  CAS  Google Scholar 

  10. N. Fogh-Andersen and O. Siggaard-Andersen, Standardizing and reporting results from Mg2+ ISEs, with some notes to sample handling, Scand. J. Clin. Lab. Invest. 54, 89–96 (1994).

    CAS  Google Scholar 

  11. A. Lewenstam, N. Blomqvist, and J. Öst, Characterization, standardization and experiences with Kone ISE for Mg2+, Scand. J. Clin. Lab. Invest. 217, S37-S43 (1994).

    Google Scholar 

  12. H. J. Marsoner, U. E. Spichiger, C. H. Ritter, et al., Measurement of ionized magnesium with nautral carrier based ISEs. Progress and results with the AVL 988-4 magnesium analyser, Scand. J. Clin. Lab. Invest. 54, 45–51 (1994).

    CAS  Google Scholar 

  13. F. Zoppi, A. De Gasperi, E. Guagnellini, et al., Measurement of ionized magnesium with AVL 988/4 electrolyte analyzer: preliminary analytical and clinical results, Scand. J. Clin. Lab. Invest. 224, S259-S274 (1996).

    Google Scholar 

  14. J. L. Noronha and B. M. Matuschak, Magnesium in critical illness: metabolism, assessment, and treatment, Intensive Care Med. 28, 667–679 (2002).

    Article  PubMed  Google Scholar 

  15. B. T. Altura and B. M. Altura, Measurement of ionized magnesium in whole blood, plasma and serum with a new ion-selective electrode in healthy and diseased human subjects, Magnesium Trace Element 10, 90–98 (1992).

    CAS  Google Scholar 

  16. W. R. Kulpmann and M. Gerlach, Relationship between ionized and total magnesium in serum, Scand. J. Clin. Lab. Invest. 224, S251-S258 (1996).

    Google Scholar 

  17. S. Zehtabchi, R. Sinert, S. Rinnert, et al., Serum ionized magnesium levels and ionized calcium-to-magnesium ratios in adult patients with sickle cell anemia, Am. J. Hematol. 77, 215–222 (2004).

    Article  PubMed  CAS  Google Scholar 

  18. R. Mittendorf, J. Dambrosia, P. G. Pryde, et al., Association between the use of antenatal magnesium sulfate in preterm labor and adverse health outcomes in infants, Am. J. Obstet. Gynecol. 186, 1111–1118 (2002).

    Article  PubMed  CAS  Google Scholar 

  19. H. E. van Ingen, H. J. Huijgen, W. T. Kok, and G. T. Sanders, Analytical evaluation of Kone Microlyte determination of ionized magnesium, Clin. Chem. 40, 52–55 (1994).

    PubMed  Google Scholar 

  20. H. Ising, F. Bertschat, T. Gunther, E. Jeremias, and A. Jeremias, Measurement of free magnesium in blood, serum and plasma with an ion-sensitive electrode, Eur. J. Clin. Chem. Clin. Biochem. 33, 365–371 (1995).

    PubMed  CAS  Google Scholar 

  21. D. C. Greenway, J. T. Hindmarsh, J. Wang, J. A. Khodadeen, and P. C. Hebert, Reference interval for whole blood ionized magnesium in a healthy population and the stability of ionized magnesium under varied laboratory conditions, Clin. Biochem. 29, 515–520 (1996).

    Article  PubMed  CAS  Google Scholar 

  22. H. J. Huijgen, R. Sanders, S. A. Cecco, N. N. Rehak, G. T. Sanders, and R. J. Elin, Serum ionized magnesium: comparison of results obtained with three ion-selective analyzers, Clin. Chem. Lab. Med. 37, 465–470 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. G. Matthiesen, K. Olofsson, and M. Rudnicki, Influence of blood sampling techniques on ionized magnesium level, Scand. J. Clin. Lab. Invest. 62, 565–568 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. I. J. Newhouse, K. P. Johnson, W. J. Montelpare, and J. E. McAuliffe, Variability within individuals of plasma ionic magnesium concentrations, BMC Physiology 2 (2002) [http://www.biomedcentral.com/bmcphysiol/about/].

  25. P. Rustad, P. Felding, L. Franzson, et al., The Nordic Reference Interval Project 2000: recommended reference intervals for 25 common biochemical properties, Scand. J. Clin. Lab. Invest. 64, 271–284 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, M., Whiss, P.A. Weak relationship between ionized and total magnesium in serum of patients requiring magnesium status. Biol Trace Elem Res 115, 13–21 (2007). https://doi.org/10.1385/BTER:115:1:13

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:115:1:13

Index Entries

Navigation