Skip to main content
Log in

Fish arsenic may influence human blood arsenic, selenium, and T4:T3 ratio

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The effects of an arsenic-rich fish diet and selenium (Se) supplementation on blood arsenic (As), Se, and thyroid hormones were studied in 32 women divided into four equal groups. Groups 1 and 4 received 400 µg Se-methionine daily, group 2 received 400 µg selenite daily, and group 3 received placebo tablets for 15 wk. In addition, groups 1–3 increased their fish intake, eating at least three fish dinners weekly. Mean blood Se concentrations (initially 1.68 ± 0.24 µmol/L) increased twofold in the Se-methionine groups (p < 0.0001) and by 32% in the selenite group (p < 0.01). Group means of blood As concentrations increased by 63% (p < 0.01), 50% (p < 0.01), 106% (p < 0.01), and 29% (p < 0.05) in the four groups, respectively. Analyzed As intake from duplicate portions of consumed fish correlated with final blood As concentrations (r=0.85, p < 0.001, n=32). In the group not receiving Se, there was a positive correlation between final blood As concentrations and plasma T4 : T3 ratio (r=0.80, p < 0.02, n=8). Initially, blood As concentrations correlated negatively with both T3 and T4 in plasma, but this correlation disappeared upon Se supplementation. The results demonstrate that increased intake of fish may influence blood As concentrations and that circulating thyroid hormones may be influenced by Se-As interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Abernathy, Y. P. Liu, D. Longfellow, H. V. Aposhian, B. Beck, B. Fowler, et al., Arsenic: health effects, mechanisms of actions, and research issues, Environ. Health Perspect. 107, 593–597 (1999).

    Article  PubMed  CAS  Google Scholar 

  2. F. Queirolo, S. Stegen, M. Restovic, M. Paz, P. Ostapczuk, M. J. Schwuger, et al., Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile, Sci. Total Environ. 255, 75–84 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. T. Tsuda, T. Inoue, M. Kojima, and S. Aoki, Market basket and duplicate portion estimation of dietary intakes of cadmium, mercury, arsenic, copper, manganese, and zinc by Japanese adults, J. AOAC Int. 78, 1363–1368 (1995).

    PubMed  CAS  Google Scholar 

  4. P. Lahermo, G. Alfthan, and D. Wang, Selenium and arsenic in the environment in Finland, J. Environ. Pathol. Toxicol. Oncol. 17, 205–216 (1998).

    PubMed  CAS  Google Scholar 

  5. R. W. Dabeka, A. D. McKenzie, G. M. Lacroix, C. Cleroux, S. Bowe, R. A. Graham, et al., Survey of arsenic in total diet food composites and estimation of the dietary intake of arsenic by Canadian adults and children, J. AOAC Int. 76, 14–25 (1993).

    PubMed  CAS  Google Scholar 

  6. I. Urieta, M. Jalon, and I. Eguilero, Food surveillance in the Basque country (Spain). II. Estimation of the dietary intake of organochlorine pesticides, heavy metals, arsenic, aflatoxin M1, iron and zinc through the Total Diet Study, 1990/91, Food Addit. Contam. 13, 29–52 (1996).

    PubMed  CAS  Google Scholar 

  7. H. M. Meltzer, H. H. Mundal, J. Alexander, K. Bibow, and T. A. Ydersbond, Does dietary arsenic and mercury affect cutaneous bleeding time and blood lipids in humans? Biol. Trace Element Res. 46, 135–153 (1994).

    CAS  Google Scholar 

  8. F. H. Nielsen, How should dietary guidance be given for mineral elements with beneficial actions or suspected of being essential? J. Nutr. 126, 2377S–2385S (1996).

    PubMed  CAS  Google Scholar 

  9. R. M. Brown, D. Newton, C. J. Pickford, and J. C. Sherlock, Human metabolism of arsenobetaine ingested with fish, Hum. Exp. Toxicol. 9, 41–46 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. Z. Meng and N. Meng, Effects of inorganic arsenicals on DNA synthesis in unsensitized human blood lymphocytes in vitro, Biol. Trace Element Res. 42, 201–208 (1994).

    CAS  Google Scholar 

  11. T. S. Wang, C. F. Kuo, K. Y. Jan, and H. Huang, Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species, J. Cell Physiol. 169, 256–268 (1996).

    Article  PubMed  CAS  Google Scholar 

  12. C. D. Davis, E. O. Uthus, and J. W. Finley, Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon, J. Nutr. 130, 2903–2909 (2000).

    PubMed  CAS  Google Scholar 

  13. A. L. Moxon, Alkali disease or selenium poisoning, South Dakota Agric. Exp. Sta. Bull. 311, 1–91 (1937).

    Google Scholar 

  14. K. R. Lowry and D. H. Baker, Amelioration of selenium toxicity by arsenicals and cysteine, J. Anim Sci. 67, 959–965 (1989).

    PubMed  CAS  Google Scholar 

  15. P. Koivistoinen, Mineral element composition of Finnish foods: N, K, Ca, Mg, P, S, Fe, Cu, Mn, Zn, Mo, Co, Ni, Cr, F, Se, Si, Rb, Al, B, Br, Hg, As, Cd, Pb and ash, Acta Agric. Scand 22 (Suppl.), 77–87 (1980).

    Google Scholar 

  16. Ø. Lie, E. Lied, A. Maage, L. R. Njaa, and K. Sandnes, Nutrient content of fish and shellfish, Fisk. Dir. Skr. Ser. Ern. (The Directorate of Fisheries, Bergen, Norway) 6, 83–105 (1994).

    CAS  Google Scholar 

  17. P. Grandjean, P. Weihe, P. J. Jorgensen, T. Clarkson, E. Cernichiari, and T. Videro, Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead, Arch. Environ. Health 47, 185–195 (1992).

    Article  PubMed  CAS  Google Scholar 

  18. H. M. Meltzer, K. Bibow, I. T. Paulsen, H. H. Mundal, G. Norheim, and H. Holm, Different bioavailability in humans of wheat and fish selenium as measured by blood platelet response to increased dietary Se, Biol. Trace Element Res. 36, 229–241 (1993).

    CAS  Google Scholar 

  19. J. Ringstad, B. K. Jacobsen, and Y. Thomassen, The Tromso Heart Study: relationships between the concentration of selenium in serum and risk factors for coronary heart disease, J. Trace Elements Electrolytes Health Dis. 1, 27–31 (1987).

    CAS  Google Scholar 

  20. B. G. Svensson, A. Schutz, A. Nilsson, I. Akesson, B. Akesson, and S. Skerfving, Fish as a source of exposure to mercury and selenium, Sci. Total Environ. 126, 61–74 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. G. Bellisola, S. Galassini, G. Moschini, G. Poli, G. Perona, and G. Guidi, Selenium and glutathione peroxidase variations induced by polyunsaturated fatty acids oral supplementation in humans, Clin. Chim. Acta 205, 75–85 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. E. Cabre, J. L. Periago, M. D. Mingorance, F. Fernandez-Banares, A. Abad, M. Esteve, et al., Factors related to the plasma fatty acid profile in healthy subjects, with special reference to antioxidant micronutrient status: a multivariate analysis, Am. J. Clin. Nutr. 55, 831–837 (1992).

    PubMed  CAS  Google Scholar 

  23. A. E. Favier, Hormonal effects of zinc on growth in children, Biol. Trace Element Res. 32, 383–398 (1992).

    CAS  Google Scholar 

  24. H. C. Freake, Molecular biological approaches to studying trace minerals: why should clinicians care? J. Am. Coll. Nutr. 12, 294–302 (1993).

    PubMed  CAS  Google Scholar 

  25. J. Neve, Clinical implications of trace elements in endocrinology, Biol. Trace Element Res. 32, 173–185 (1992).

    CAS  Google Scholar 

  26. G. Norheim and A. Haugen, Precise determination of selenium in tissues using automated wet digestion and an automated hydride generator-atomic absorption spectroscopy system, Acta Pharmacol. Toxicol. (Copenh.) 59 (Suppl. 7), 610–612 (1986).

    CAS  Google Scholar 

  27. G. Norheim, High productivity analyses of elements in foods using automated digestion and atomic absorption techniques, Proceedings of the Fifth European Conference on Food Chemistry, Vol. 2, pp. 730–734 (1989).

    CAS  Google Scholar 

  28. G. V. Iyengar, W. E. Kolmer, and H. J. M. Bowen, The elemental composition of human tissues and body fluids, Verlag Chenie, Germany (1978).

    Google Scholar 

  29. J. Versieck, Trace elements in human body fluids and tissues, Crit Rev. Clin. Lab Sci. 22, 97–184 (1985).

    PubMed  CAS  Google Scholar 

  30. H. M. Meltzer, G. Norheim, K. Bibow, K. Myhre, and H. Holm, The form of selenium determines the response to supplementation in a selenium replete population, Eur. J. Clin. Nutr. 44, 435–446 (1990).

    PubMed  CAS  Google Scholar 

  31. D. J. Pearson, J. P. Day, V. J. Suarez-Mendez, P. F. Miller, S. Owen, and A. Woodcock, Human selenium status and glutathione peroxidase activity in north-west England, Eur. J. Clin. Nutr. 44, 277–283 (1990).

    PubMed  CAS  Google Scholar 

  32. C. D. Thomson, M. F. Robinson, D. R. Campbell, and H. M. Rea, Effect of prolonged supplementation with daily supplements of selenomethionine and sodium selenite on glutathione peroxidase activity in blood of New Zealand residents, Am. J. Clin. Nutr. 36, 24–31 (1982).

    PubMed  CAS  Google Scholar 

  33. O. A. Levander, G. Alfthan, H. Arvilommi, C. G. Gref, J. K. Huttunen, M. Kataja, et al., Bioavailability of selenium to Finnish men as assessed by platelet glutathione peroxidase activity and other blood parameters, Am. J. Clin. Nutr. 37, 887–897 (1983).

    PubMed  CAS  Google Scholar 

  34. M. F. Robinson, H. M. Rea, G. M. Friend, R. D. Stewart, P. C. Snow, and C. D. Thomson, On supplementing the selenium intake of New Zealanders. 2. Prolonged metabolic expriments with daily supplements of selenomethionine, selenite and fish, Br. J. Nutr. 39, 589–600 (1978).

    Article  PubMed  CAS  Google Scholar 

  35. D. Behne, A. Kyriakopoulos, S. Scheid, and H. Gessner, Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats, J. Nutr. 121, 806–814 (1991).

    PubMed  CAS  Google Scholar 

  36. M. A. Beilstein and P. D. Whanger, Glutathione peroxidase activity and chemical forms of selenium in tissues of rats given selenite or selenomethionine, J. Inorg. Biochem. 33, 31–46 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. P. D. Whanger and J. A. Butler, Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats, J. Nutr. 118, 846–852 (1988).

    PubMed  CAS  Google Scholar 

  38. J. R. Cannon, J. B. Saunders, and R. F. Toia, Isolation and preliminary toxicological evaluation of arsenobetaine—the water-soluble arsenical constituent from the hepatopancreas of the western rock lobster, Sci. Total Environ. 31, 181–185 (1983).

    Article  PubMed  CAS  Google Scholar 

  39. J. S. Edmonds and K. A. Francesconi, Transformations of arsenic in the marine environment, Experientia 43, 553–557 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. E. Sabbioni, M. Fischbach, G. Pozzi, R. Pietra, M. Gallorini, and J. L. Piette, Cellular retention, toxicity and carcinogenic potential of seafood arsenic. I. Lack of cytotoxicity and transforming activity of arsenobetaine in the BALB/3T3 cell line, Carcinogenesis 12, 1287–1291 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. M. Vahter, E. Marafante, and L. Dencker, Metabolism of arsenobetaine in mice, rats and rabbits. Sci. Total Environ. 30, 197–211 (1983).

    Article  PubMed  CAS  Google Scholar 

  42. J. P. Buchet, R. Lauwerys, and H. Roels, Urinary excretion of inorganic arsenic and its metabolites after repeated ingestion of sodium metaarsenite by volunteers, Int. Arch. Occup. Environ. Health 48, 111–118 (1981).

    Article  PubMed  CAS  Google Scholar 

  43. V. Foa, A. Colombi, M. Maroni, M. Buratti, and G. Calzaferri, The speciation of the chemical forms of arsenic in the biological monitoring of exposure to inorganic arsenic, Sci. Total Environ. 34, 241–259 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. X. C. Le, W. R. Cullen, and K. J. Reimer, Human urinary arsenic excretion after one-time ingestion of seaweed, crab, and shrimp, Clin. Chem. 40, 617–624 (1994).

    PubMed  CAS  Google Scholar 

  45. D. E. Nixon and T. P. Moyer, Arsenic analysis II: rapid separation and quantification of inorganic arsenic plus metabolites and arsenobetaine from urine, Clin. Chem. 38, 2479–2483 (1992).

    PubMed  CAS  Google Scholar 

  46. M. Vahter, Environmental and occupational exposure to inorganic arsenic, Acta Pharmacol. Toxicol. (Copenh.) 59, 31–34 (1986).

    CAS  Google Scholar 

  47. A. J. Mürer, A. Abildtrup, O. M. Poulsen, and J. M. Christensen, Effect of seafood consumption on the urinary level of total hydride-generating arsenic compounds. Instability of arsenobetaine and arsenocholine, Analyst 117, 677–680 (1992).

    Article  PubMed  Google Scholar 

  48. W. R. Cullen and M. Dodd, The photo-oxidation of solutions of arsenicals to arsenate: a convenient analytical procedure, Appl. Organomet. Chem. 2, 1–7 (1988).

    Article  Google Scholar 

  49. W. M. Jongen, J. M. Cardinaals, P. M. Bos, and P. Hagel, Genotoxicity testing of arsenobetaine, the predominant form of arsenic in marine fishery products, Food Chem. Toxicol. 23, 669–673 (1985).

    Article  PubMed  CAS  Google Scholar 

  50. J. P. Buchet, J. Pauwels, and R. Lauwerys, Assessment of exposure to inorganic arsenic following ingestion of marine organisms by volunteers, Environ. Res. 66, 44–51 (1994).

    Article  PubMed  CAS  Google Scholar 

  51. E. Glattre, A. Mravcova, J. Lener, M. Vobecky, E. Egertova, and M. Mysliveckova, Study of distribution and interaction of arsenic and selenium in rat thyroid, Biol. Trace Element Res. 49, 177–186 (1995).

    CAS  Google Scholar 

  52. M. J. Berry, L. Banu, and P. R. Larsen, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme, Nature 349, 438–440 (1991).

    Article  PubMed  CAS  Google Scholar 

  53. O. M. D. Dhubhghaill and P. J. Sadler, The structure and reactivity of arsenic compounds: biological activity and drug design, Struct. Bond. 78, 129–183 (1991).

    Google Scholar 

  54. J. Aaseth, H. Frey, E. Glattre, G. Norheim, J. Ringstad, and Y. Thomassen, Selenium concentrations in the human thyroid gland. Biol. Trace Element Res. 24, 147–152 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meltzer, H.M., Maage, A., Ydersbond, T.A. et al. Fish arsenic may influence human blood arsenic, selenium, and T4:T3 ratio. Biol Trace Elem Res 90, 83–98 (2002). https://doi.org/10.1385/BTER:90:1-3:83

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:90:1-3:83

Index Entries

Navigation