Skip to main content
Log in

Structure-function properties of prolyl oligopeptidase family enzymes

  • Review
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Prolyl oligopeptidase family enzymes regulate the activity of biologically active peptides and peptide hormones, and they are implicated in diseases, including amnesia, depression, diabetes, and trypanosomiasis. Distinctively, these enzymes hydrolyze only relatively short peptide substrates, while large structured peptides and proteins are not usually cleaved. Prolyl oligopeptidase has a C-terminal α/β-hydrolase catalytic domain that is similar to lipases and esterases. An N-terminal β-propeller domain regulates access to the buried active site, explaining the observed oligopeptidase activity. The catalytic and regulatory mechanisms have been investigated using a combination of X-ray crystallography, site-directed mutagenesis, and enzyme kinetic measurements. Crystal structures have now been determined for representative members of three of the four subfamilies and are facilitating a better understanding of the structure-function properties of these physiologically and pharmaceutically important enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puente, X. S., Sanchez, L. M., Overall, C. M. and Lopez-Otin, C. (2003) Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558.

    Article  PubMed  CAS  Google Scholar 

  2. Rawlings, N. D., Tolle, D. P., and Barrett, A. J. (2004) MEROPS: the peptidase database. Nucleic Acids Res. 32, 160–164.

    Article  CAS  Google Scholar 

  3. Holmquist, M. (2000) Alpha/beta-hydrolase fold enzymes: structures, functions and mechanisms. Curr. Protein Pept. Sci. 1, 209–235.

    Article  PubMed  CAS  Google Scholar 

  4. Dodson, G. and Wlodawer, A. (1998) Catalytic triads and their relatives. Trends Biochem. Sci. 23, 347–352.

    Article  PubMed  CAS  Google Scholar 

  5. Venalainen, J. I., Juvonen, R. O., and Mannisto, P. T. (2004) Evolutionary relationships of the prolyl oligopeptidase family enzymes. Eur. J. Biochem. 271, 2705–2715.

    Article  PubMed  CAS  Google Scholar 

  6. Walter, R., Shlank, H., Glass, J. D., Schwartz, I. L., and Kerenyi, T. D. (1971) Leucylglycinamide released from oxytocin by human uterine enzyme. Science 173, 827–829.

    Article  PubMed  CAS  Google Scholar 

  7. Koida, M. and Walter, R. (1976) Post-proline cleaving enzyme. Purification of this endopeptidase by affinity chromatography. J. Biol. Chem. 251, 7593–7599.

    PubMed  CAS  Google Scholar 

  8. Wilk, S. (1983) Prolyl endopeptidase. Life Sci. 33, 2149–2157.

    Article  PubMed  CAS  Google Scholar 

  9. Mentlein, R. (1988) Proline residues in the maturation and degradation of peptide-hormones and neuropeptides. FEBS Lett. 234, 251–256.

    Article  PubMed  CAS  Google Scholar 

  10. Cunningham, D. F. and O’Connor, B. (1997) Proline specific peptidases. Biochim. Biophys. Acta 1343, 160–186.

    PubMed  CAS  Google Scholar 

  11. Maes, M., Goossens, F., Scharpe, S., Meltzer, H. Y., D’Hondt, P., and Cosyns, P. (1994) Lower serum prolyl endopeptidase enzyme activity in major depression: further evidence that peptidases play a role in the pathophysiology of depression. Biol. Psychiatry 35, 545–552.

    Article  PubMed  CAS  Google Scholar 

  12. Maes, M., Goossens, F., Scharpe, S., Calabrese, J., Desnyder, R., and Meltzer, H. Y. (1995) Alterations in plasma prolyl endopeptidase activity in depression, mania, and schizophrenia: effects of antidepressants, mood stabilizers, and antipsychotic drugs. Psychiatry Res. 58, 217–225.

    Article  PubMed  CAS  Google Scholar 

  13. Yoshimoto, T., Kado, K., Matsubara, F., Koriyama, N., Kaneto, H. and Tsuru, D. (1987) Specific inhibitors for prolyl endopeptidase and their anti-amnesic effect. J. Pharmacobiodyn. 10, 730–735.

    PubMed  CAS  Google Scholar 

  14. Morain, P., Lestage, P., De Nanteuil, G., et al. (2002) S17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies. CNS Drug Rev. 8, 31–52.

    Article  PubMed  CAS  Google Scholar 

  15. Shinoda, M., Toide, K., Ohsawa, I., and Kohsaka, S. (1997) Specific inhibitor for prolyl endopeptidase suppresses the generation of amiloid βprotein in NG108-15 cells. Biochem. Biophys. Res. Commun. 235, 641–645.

    Article  PubMed  CAS  Google Scholar 

  16. Kato, A., Fukunari, A., Sakai, Y., and Nakajima, Z. (1997) Prevention of amyloid-like deposition by a selective prolyl endopeptidase inhibitor, Y-29794, in senescence-accelerated mouse. J. Pharmacol. Exp. Ther. 283, 328–335.

    PubMed  CAS  Google Scholar 

  17. Petit, A., Barelli, H., Morain, P., and Checler, F. (2000) Novel proline endopeptidase inhibitors do not modify Aβ40/42 formation and degradation by human cells expressing wild-type and Swedish mutated β-amyloid precursor protein. Br. J. Pharmacol. 130, 1613–1617.

    Article  PubMed  CAS  Google Scholar 

  18. Welches, W. R., Brosnihan, K. B., and Ferrario, C. M. (1993) A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase. Life Sci. 52, 1461–1480.

    Article  PubMed  CAS  Google Scholar 

  19. Santana, J. M., Grellier, P., Schrevel, J., and Teixeira, A. R. (1997) A Trypanosoma cruzi-secreted 80 kDa proteinase with specificity for human collagen types I and IV. Biochem. J. 325, 129–137.

    PubMed  CAS  Google Scholar 

  20. Grellier, P., Vendeville, S., Joyeau, R., et al. (2001) Trypanosoma cruzi prolyl oligopeptidase Tc80 is involved in nonphagocytic mammalian cell invasion by trypomastigotes. J. Biol. Chem. 276, 47,078–47,086.

    Article  CAS  Google Scholar 

  21. Bastos, I. M., Grellier, P., Martins, N. F., et al. (2005) Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80) that is required for parasite entry into mammalian cells. Biochem. J. 388, 29–38.

    Article  PubMed  CAS  Google Scholar 

  22. Fülöp, V., Böcskei, Z., and Polgár, L. (1998) Prolyl oligopeptidase: an unusual β-propeller domain regulates proteolysis. Cell 94, 161–170.

    Article  PubMed  Google Scholar 

  23. Wall, M. A., Coleman, D. E., Lee, E., et al. (1995) The structure of the G protein heterotrimer Giα1β1γ2. Cell 83, 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  24. Lambright, D. G., Sondek, J., Bohm, A., Skiba, N. P., Hamm, H. E., and Sigler, P. B. (1996) The 2.0 A crystal structure of a heterotrimeric G protein. Nature 379, 311–319.

    Article  PubMed  CAS  Google Scholar 

  25. Sondek, J., Bohm, A., Lambright, D. G., Hamm, H. E., and Sigler, P. B. (1996) Crystal structure of a G-protein βγ dimer at 2.1A resolution. Nature 379, 369–374.

    Article  PubMed  CAS  Google Scholar 

  26. Baker, S. C., Saunders, N. F., Willis, A. C., Ferguson, S. J., Hajdu, J., and Fülöp, V. (1997) Cytochrome cd 1 structure: unusual haem environments in a nitrite reductase and analysis of factors contributing to β-propeller folds. J. Mol. Biol. 269, 440–455.

    Article  PubMed  CAS  Google Scholar 

  27. Fülöp, V. and Jones, D. T. (1999) β-Propellers: structural rigidity and functional diversity. Curr. Opin. Struct. Biol. 9, 715–721.

    Article  PubMed  Google Scholar 

  28. Faber, H. R., Groom, C. R., Baker, H. M., Morgan, W. T., Smith, A., and Baker, E. N. (1995) 1.8 Å structure of the C-terminal domain of rabbit serum hemopexin. Structure 3, 551–559.

    Article  PubMed  CAS  Google Scholar 

  29. Li, J., Brick, P., O’Hare, M. C., et al. (1995) Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed β-propeller. Structure 3, 341–349.

    Article  Google Scholar 

  30. Polgár, L. (1991). pH-dependent mechanism in the catalysis of prolyl endopeptidase from pig muscle. Eur. J. Biochem. 197, 441–447.

    Article  PubMed  Google Scholar 

  31. Polgár, L. (1992) Prolyl endopeptidase catalysis. A physical rather than a chemical step is rate-limiting. Biochem. J. 283, 647–648.

    PubMed  Google Scholar 

  32. Fülöp, V., Szeltner, Z., and Polgár, L. (2000) Catalysis of serine oligopeptidases is controlled by a gating filter mechanism. EMBO Rep. 1, 277–281.

    Article  PubMed  Google Scholar 

  33. Szeltner, Z., Rea, D., Juhász, T., Renner, V., Fülöp, V., and Polgár, L. (2004) Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding. J. Mol. Biol. 340, 627–637.

    Article  PubMed  CAS  Google Scholar 

  34. Hasebe, T., Hua, J., Someya, A., Morain, P., Checler, F., and Nagaoka, I. (2001) Involvement of cytosolic prolyl endopeptidase in degradation of p40-phox splice variant protein in myeloid cells. J. Leukoc. Biol. 69, 963–968.

    PubMed  CAS  Google Scholar 

  35. Shan, L., Mathews, I. I., and Khosla, C. (2005) Structural and mechanistic analysis of two prolyl endopeptidases: role of interdomain dynamics in catalysis and specificity. Proc. Natl. Acad. Sci. U.S.A. 102, 3599–3604.

    Article  PubMed  CAS  Google Scholar 

  36. Harris, M. N., Madura, J. D., Ming, L. J., and Harwood, V. J. (2001) Kinetic and mechanistic studies of prolyl oligopeptidase from the hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 276, 19,310–19,317.

    CAS  Google Scholar 

  37. Fülöp, V., Szeltner, Z., Renner, V., and Polgár, L. (2001) Structures of prolyl oligopeptidase substrate/inhibitor complexes. Use of inhibitor binding for titration of the catalytic histidine residue. J. Biol. Chem. 276, 1262–1266.

    Article  PubMed  Google Scholar 

  38. Szeltner, Z., Rea, D., Renner, V., Juliano, L., Fülöp, V., and Polgár, L. (2003) Electrostatic environment at the active site of prolyl oligopeptidase is highly influential during substrate binding. J. Biol. Chem. 278, 48,786–48,793.

    Article  CAS  Google Scholar 

  39. Rosenblum, J. S. and Kozarich, J. W. (2003) Prolyl peptidases: a serine protease subfamily with high potential for drug discovery. Curr. Opin. Chem. Biol. 7, 496–504.

    Article  PubMed  CAS  Google Scholar 

  40. Polgár, L., Kollát, E., and Hollósi, M. (1993) Prolyl oligopeptidase catalysis. Reactions with thiono substrates reveal substrate-induced conformational change to be the rate-limiting step. FEBS Lett. 322, 227–230.

    Article  PubMed  Google Scholar 

  41. Szeltner, Z., Rea, D., Renner, V., Fülöp, V., and Polgár, L. (2002) Electrostatic effects and binding determinants in the catalysis of prolyl oligopeptidase. Site-specific mutagenesis at the oxyanion binding site. J. Biol. Chem. 277, 42,613–42,622.

    CAS  Google Scholar 

  42. Cygler, M., Schrag, J. D., Sussman, J. L., et al. (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 2, 366–382.

    Article  PubMed  CAS  Google Scholar 

  43. Halkides, C. J., Wu, Y. Q., and Murray, C. J. (1996). A low-barrier hydrogen bood in subtilisin: 1H and 15N NMR studies with peptidyl trifluoromethyl ketones. Biochemistry 35, 15,941–15,948.

    CAS  Google Scholar 

  44. Craik, C. S., Roczniak, S., Largman, C., and Rutter, W. J. (1987) The catalytic role of the active site aspartic acid in serine proteases. Science 237, 909–913.

    Article  PubMed  CAS  Google Scholar 

  45. Sprang, S., Standing, T., Fletterick, R. J., et al. (1987) The three-dimensional structure of Asn102 mutant of trypsin: role of Asp102 in serine protease catalysis. Science 237, 905–909.

    Article  PubMed  CAS  Google Scholar 

  46. Szeltner, Z., Rea, D., Juhasz, T., et al. (2002) Substrate-dependent competency of the catalytic triad of prolyl oligopeptidase. J. Biol. Chem. 277, 44,597–44,605.

    CAS  Google Scholar 

  47. Fersht, A. R. (1987) Structure and Mechanism in Protein Sciences: A Guide to Enzyme Catalysis and Protein Folding, WH Freeman & Company, New York.

    Google Scholar 

  48. Liang, T. C. and Abeles, R. H. (1987) Complex of α-chymotrypsin and N-acetyl-L-leucyl-L-phenylalanyl trifluoromethyl ketone: structural studies with NMR spectroscopy. Biochemistry 26, 7603–7608.

    Article  PubMed  CAS  Google Scholar 

  49. Matthews, D. A., Alden, R. A., Birktoft, J. J., Freer, S. T., and Kraut, J. (1975) X-ray crystallographic study of boronic acid adducts with subtilisin BPN′ (Novo). A model for the catalytic transition state. J. Biol. Chem. 250, 7120–7126.

    PubMed  CAS  Google Scholar 

  50. Bryan, P., Pantoliano, M. W., Quill, S. G., Hsiao, H. Y., and Poulos, T. (1986) Site-directed mutagenesis and the role of the oxyanion hole in subtilisin. Proc. Natl. Acad. Sci. U.S.A. 83, 3743–3745.

    Article  PubMed  CAS  Google Scholar 

  51. Braxton, S. and Wells, J. A. (1991) The importance of a distal hydrogen bonding group in stabilizing the transition state in subtilisin BPN′. J. Biol. Chem. 266, 11,797–11,800.

    CAS  Google Scholar 

  52. Engel, M., Hoffmann, T., Wagner, L., et al. (2003) The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc. Natl. Acad. Sci. U.S.A. 100, 5063–5068.

    Article  PubMed  CAS  Google Scholar 

  53. Hiramatsu, H., Kyono, K., Higashiyama, Y., et al. (2003) The structure and function of human dipeptidyl peptidase IV, possessing a unique eight-bladed β-propeller fold. Biochem. Biophys. Res. Commun. 302, 849–854.

    Article  PubMed  CAS  Google Scholar 

  54. Oefner, C., D’Arcy, A., Mac Sweeney, A., Pierau, S., Gardiner, R., and Dale, G. E. (2003) High-resolution structure of human apo dipeptidyl peptidase IV/CD26 and its complex with 1-[([2-[(5-iodopyridin-2-yl) amino]-ethyl]amino)-acetyl]-2-cyano-(S)-pyrrolidine. Acta Crystallogr. D 59, 1206–1212.

    Article  PubMed  Google Scholar 

  55. Rasmussen, H. B., Branner, S., Wiberg, F. C., and Wagtmann, N. (2003) Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nat. Struct. Biol. 10, 19–25.

    Article  PubMed  CAS  Google Scholar 

  56. Thoma, R., Loffler, B., Stihle, M., Huber, W., Ruf, A., and Hennig, M. (2003) Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure 11, 947–959.

    Article  PubMed  CAS  Google Scholar 

  57. Larsen, N. A., Turner, J. M., Stevens, J. et al. (2002) Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9, 17–21.

    Article  PubMed  CAS  Google Scholar 

  58. Szeltner, Z., Renner, V., and Polgár, L. (2000) Substrate- and pH-dependent contribution of oxyanion binding site to the catalysis of prolyl oligopeptidase, a paradigm of the serine oligopeptidase family. Protein Sci. 9, 353–360.

    PubMed  CAS  Google Scholar 

  59. Polgár, L. (1997) A potential processing enzyme in prokaryotes: oligopeptidase B, a new type of serine peptidase. Proteins 28, 375–379.

    Article  PubMed  Google Scholar 

  60. Caler, E. V., Vaena de Avalos, S., Haynes, P. A., Andrews, N. W., and Burleigh, B. A. (1998) Oligopeptidase B-dependent signalling mediates host cell invasion by Trypanosoma cruzi. EMBO J. 17, 4975–4986.

    Article  PubMed  CAS  Google Scholar 

  61. Caler, E. V., Morty, R. E., Burleigh, B. A., and Andrews, N. W. (2000) Dual role of signaling pathways leading to Ca2+ and cyclic AMP elevation in host cell invasion by Trypanosoma cruzi. Infect. Immun. 68, 6602–6610.

    Article  PubMed  CAS  Google Scholar 

  62. Morty, R. E., Lonsdale-Eccles, J. D., Morehead, J., et al. (1999) Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. J. Biol. Chem. 274, 26,149–26,156.

    Article  CAS  Google Scholar 

  63. Morty, R. E., Lonsdale-Eccles, J. D., Mentele, R., Auerswald, E. A., and Coetzer, T. H. (2001) Trypanosome-derived oligopeptidase B is released into the plasma of infected rodents, where it persists and retains full catalytic activity. Infect. Immun. 69, 2757–2761.

    Article  PubMed  CAS  Google Scholar 

  64. Morty, R. E., Authie, E., Troeberg, L., Lonsdale-Eccles, J. D., and Coetzer, T. H. (1999) Purification and characterisation of a trypsin-like serine oligopeptidase from Trypanosoma congolense. Mol. Biochem. Parasitol. 102, 145–155.

    Article  PubMed  CAS  Google Scholar 

  65. Morty, R. E., Pelle, R., Vadasz, I., Uzcanga, G. L., Seeger, W., and Bubis, J. (2005) Oligopeptidase B from Trypanosoma evansi: a parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 280, 10,925–10,937.

    Article  CAS  Google Scholar 

  66. Morty, R. E., Troeberg, L., Pike, R. N., et al. (1998) A trypanosome oligopeptidase as a target for the trypanocidal agents pentamidine, diminazene and suramin. FEBS Lett. 433, 251–256.

    Article  PubMed  CAS  Google Scholar 

  67. Morty, R. E., Troeberg, L., Powers, J. C., Ono, S., Lonsdale-Eccles, J. D., and Coetzer, T. H. (2000) Characterisation of the antitrypanosomal activity of peptidyl alpha-aminoalkyl phosphonate diphenyl esters. Biochem. Pharmacol. 60, 1497–1504.

    Article  PubMed  CAS  Google Scholar 

  68. Tsuji, A., Yuasa, K., and Matsuda, Y. (2004) Identification of oligopeptidase B in higher plants. Purification and characterization of oligopeptidase B from quiescent wheat embryo, Triticum aestivum. J. Biochem. 136, 673–681.

    Article  PubMed  CAS  Google Scholar 

  69. Tsuru, D. and Yoshimoto, T. (1994) Oligopeptidase B: protease II from Escherichia coli. Methods Enzymol. 244, 201–215.

    PubMed  CAS  Google Scholar 

  70. Barrett, A. J., Rawlings, N. D., and Woessner, J. F. (2004) Handbook of Proteolytic Enzymes, Academic Press, London.

    Google Scholar 

  71. Burleigh, B. A., Caler, E. V., Webster, P., and Andrews, N. W. (1997) A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signalling in mammalian cells. J. Cell. Biol. 136, 609–620.

    Article  PubMed  CAS  Google Scholar 

  72. Gérczei, T., Keserü, G. M., and Náray-Szabó, G. (2000) Construction of a 3D model of oligopeptidase B, a potential processing enzyme in prokaryotes. J. Mol. Graph. Model. 18, 7–17.

    Article  PubMed  Google Scholar 

  73. Morty, R. E., Fülöp, V., and Andrews N. W. (2002) Substrate recognition properties of oligopeptidase B from Salmonella enterica serovar Typhimurium. J. Bacteriol. 184, 3329–3337.

    Article  PubMed  CAS  Google Scholar 

  74. Polgár, L. (1999) Oligopeptidase B: a new type of serine peptidase with a unique substrate-dependent temperature sensitivity. Biochemistry 38, 15,548–15,555.

    Article  CAS  Google Scholar 

  75. Hemerly, J. P., Oliveira, V., Del Nery, E., et al. (2003) Subsite specificity (S3, S2, S1′, S2′ and S3′) of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochem. J. 373, 933–939.

    Article  PubMed  CAS  Google Scholar 

  76. Yoshimoto, T., Tabira, J., Kabashima, T., Inoue, S., and Ito, K. (1995) Protease II from Moraxella lacunata: cloning, sequencing, and expression of the enzyme gene, and crystallization of the expressed enzyme. J. Biochem. 117, 654–660.

    PubMed  CAS  Google Scholar 

  77. Elovson, J. (1980) Biogenesis of plasma membrane glycoproteins. Purification and properties of two rat liver plasma membrane glycoproteins. J. Biol. Chem. 255, 5807–5815.

    PubMed  CAS  Google Scholar 

  78. Durinx, C., Lambeir, A. M., Bosmans, E., et al. (2000) Molecular characterization of dipeptidyl peptidase activity in serum: soluble CD26/dipeptidyl peptidase IV is responsible for the release of X-Pro dipeptides. Eur. J. Biochem. 267, 5608–5613.

    Article  PubMed  CAS  Google Scholar 

  79. Aertgeerts, K., Ye, S., Shi, L., et al. (2004) N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Sci. 13, 145–154.

    Article  PubMed  CAS  Google Scholar 

  80. Tiruppathi, C., Ganapathy, V., and Leibach, F. H. (1990) Evidence for tripeptide-proton symport in renal brush border membrane vesicles. Studies in a novel rat strain with a genetic absence of dipeptidyl peptidase IV. J. Biol. Chem. 265, 2048–2053.

    PubMed  CAS  Google Scholar 

  81. Suzuki, Y., Erickson, R. H., Sedlmayer, A., Chang, S. K., Ikehara, Y., and Kim, Y. S. (1993) Dietary regulation of rat intestinal angiotensin-converting enzyme and dipeptidyl peptidase IV. Am. J. Physiol. 264, 1153–1159.

    Google Scholar 

  82. Drucker, D. J. (2001) Minireview: the glucagon-like peptides. Endocrinology 142, 521–527.

    Article  PubMed  CAS  Google Scholar 

  83. Ansorge, S., Buhling, F., Kahne, T., et al. (1997) CD26/dipeptidyl peptidase IV in lymphocyte growth regulation. Adv. Exp. Med. Biol. 421, 127–140.

    PubMed  CAS  Google Scholar 

  84. Kahne, T., Lendeckel, U., Wrenger, S., Neubert, K., Ansorge, S., and Reinhold, D. (1999) Dipeptidyl peptidase IV: a cell surface peptidase involved in regulating T cell growth (review). Int. J. Mol. Med. 4, 3–15.

    PubMed  CAS  Google Scholar 

  85. Ludwig, A., Schiemann, F., Mentlein, R., Lindner, B., and Brandt, E. (2002) Dipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine. J. Leukoc. Biol. 72, 183–191.

    PubMed  CAS  Google Scholar 

  86. Ludwig, K., Fan, H., Dobers, J., Berger, M., Reutter, W., and Bottcher, C. (2004) 3D structure of the CD26-ADA complex obtained by cryo-EM and single particle analysis. Biochem. Biophys. Res. Commun. 313, 223–229.

    Article  PubMed  CAS  Google Scholar 

  87. Cheng, H. C., Abdel-Ghany, M., and Pauli, B. U. (2003) A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. J. Biol. Chem. 278, 24,600–24,607.

    CAS  Google Scholar 

  88. Loster, K., Zeilinger, K., Schuppan, D., and Reutter, W. (1995) The cysteine-rich region of dipeptidyl peptidase IV (CD 26) is the collagen-binding site. Biochem. Biophys. Res. Commun. 217, 341–348.

    Article  PubMed  CAS  Google Scholar 

  89. Blanco, J., Valenzuela, A., Herrera, C., Lluis, C., Hovanessian, A. G., and Franco, R. (2000) The HIV-1 gp120 inhibits the binding of adenosine deaminase to CD26 by a mechanism modulated by CD4 and CXCR4 expression. FEBS Lett. 477, 123–128.

    Article  PubMed  CAS  Google Scholar 

  90. Herrera, C., Morimoto, C., Blanco, J., et al. (2001) Comodulation of CXCR4 and CD26 in human lymphocytes. J. Biol. Chem. 276, 19,532–19,539.

    Article  CAS  Google Scholar 

  91. Ishii, T., Ohnuma, K., Murakami, A., et al. (2001) CD26-mediated signalling for T cell activation occurs in lipid rafts through its association with CD45RO. Proc. Natl. Acad. Sci. U.S.A. 98, 12,138–12,143.

    CAS  Google Scholar 

  92. Busek, P., Malik, R., and Sedo, A. (2004) Dipeptidyl peptidase IV activity and/or structure homologues (DASH) and their substrates in cancer. Int. J. Biochem. Cell Biol. 36, 408–421.

    Article  PubMed  CAS  Google Scholar 

  93. Kumagai, Y., Konishi, K., Gomi, T., Yagishita, H., Yajima, A., and Yoshikawa, M. (2000) Enzymatic properties of dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis and its participation in virulence. Infect. Immun. 68, 716–724.

    Article  PubMed  CAS  Google Scholar 

  94. Takahashi, N. and Sato, T. (2000) Preferential utilization of dipeptides by Porphyromonas gingivalis. J. Dent. Res. 80, 1425–1429.

    Google Scholar 

  95. Takahashi, N. and Sato, T. (2002) Dipeptide utilization by the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum. Oral Microbiol. Immunol. 17, 50–54.

    Article  PubMed  Google Scholar 

  96. Yagishita, H., Kumagai, Y., Konishi, K., Takahashi, Y., Aoba, T., and Yoshikawa, M. (2001) Histopathological studies on virulence of dipeptidyl aminopeptidase IV (DPPIV) of Porphyromonas gingivalis in a mouse abscess model: use of a DPPIV-deficient mutant. Infect. Immun. 69, 7159–7161.

    Article  PubMed  CAS  Google Scholar 

  97. Banbula, A., Bugno, M., Goldstein, J., et al. (2000) Emerging family of proline-specific peptidases of Porphyromonas gingivalis: purification and characterization of serine dipeptidyl peptidase, a structural and functional homologue of mammalin prolyl dipeptidyl peptidase IV. Infect. Immun. 68, 1176–1182.

    Article  PubMed  CAS  Google Scholar 

  98. Lambeir, A. M., Rea, D., Fülöp, V., et al. (2003) Exploration of the active site of dipeptidyl peptidase IV from Porphyromonas gingivalis. Comparison with the human enzyme. Adv. Exp. Med. Biol. 524, 29–35.

    PubMed  CAS  Google Scholar 

  99. Rea, D., Lambeir, A. M., Kumagai, Y., De Meester, I., Scharpé, S., and Fülöp, V. (2004) Expression, purification and preliminary crystallographic analysis of dipeptidyl peptidase IV from Porphyromonas gingivalis. Acta Crystallogr. D 60, 1871–1873.

    Article  PubMed  CAS  Google Scholar 

  100. Aertgeerts, K., Ye, S., Tennant, M. G., et al. (2004) Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci. 13, 412–421.

    Article  PubMed  CAS  Google Scholar 

  101. Brandstetter, H., Kim, J. S., Groll, M., and Huber, R. (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414, 466–470.

    Article  PubMed  CAS  Google Scholar 

  102. Kim, J. S., Groll, M., Musiol, H. J., et al. (2002) Navigation inside a protease: substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum. J. Mol. Biol. 324, 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  103. Abbott, C. A., McCaughan, G. W., and Gorrell, M. D. (1999) Two highly conserved glutamic acid residues in the predicted β-propeller domain of dipeptidyl peptidase IV are required for its enzyme activity. FEBS Lett. 458, 278–284.

    Article  PubMed  CAS  Google Scholar 

  104. Bjelke, J. R., Christensen, J., Branner, S., et al. (2004) Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J. Biol. Chem. 279, 34,691–34,697.

    Article  CAS  Google Scholar 

  105. Hanski, C., Huhle, T., Gossrau, R., and Reutter, W. (1998) Direct evidence for the binding of rat liver DPP IV to collagen in vitro. Exp. Cell. Res. 178, 64–72.

    Article  Google Scholar 

  106. Gorrell, M. D., Gysbers, V., and McCaughan, G. W. (2001) CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand. J. Immunol. 54, 249–264.

    Article  PubMed  CAS  Google Scholar 

  107. Von Bonin, A., Huhn, J., and Fleischer, B. (1998) Dipeptidyl-peptidase IV/CD26 on T cells: analysis of an alternative T-cell activation pathway. Immunol. Rev. 161, 43–53.

    Article  Google Scholar 

  108. Kameoka, J., Tanaka, T., Nojima, Y., Schlossman, S. F., and Morimoto, C. (1993) Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261, 466–469.

    Article  PubMed  CAS  Google Scholar 

  109. Schrader, W. P., West, C. A., Miczek, A. D., and Norton, E. K. (1990) Characterization of the adenosine deaminase-adenosine deaminase complexing protein binding reaction. J. Biol. Chem. 265, 19,312–19,318.

    CAS  Google Scholar 

  110. Weihofen, W. A., Liu, J., Reutter, W., Saenger, W., and Fan, H. (2004) Crystal structure of CD26/dipeptidyl-peptidase IV in complex with adenosine deaminase reveals a highly amphiphilic interface. J. Biol. Chem. 279, 43,330–43,335.

    Article  CAS  Google Scholar 

  111. De Meester, I., Vanham, G., Kestens, L., et al. (1994) Binding of adenosine deaminase to the lymphocyte surface via CD26. Eur. J. Immunol. 24, 566–570.

    Article  PubMed  Google Scholar 

  112. Gines, S., Marin, M., Mallol, J., et al. (2002) Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. Biochem. J. 361, 203–209.

    Article  PubMed  CAS  Google Scholar 

  113. Strop, P., Bankovich, A. J., Hansen, K. C., Garcia, K. C., and Brünger, A. T. (2004) Structure of a human A-type potassium channel interacting protein DPPX, a member of the dipeptidyl aminopeptidase family. J. Mol. Biol. 343, 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  114. Nadal, M. S., Ozaita, A., Amarillo, Y., et al. (2003). The CD26-related dipeptidyl aminopeptidase-like protein DPPX is a critical component of neuronal A-type K+ channels. Neuron 37, 449–461.

    Article  PubMed  CAS  Google Scholar 

  115. Jerng, H. H., Qian, Y., and Pfaffinger, P. J. (2004) Modulation of Kv4.2 channel expression and gating by dipeptidyl peptidase 10 (DPP10). Biophys. J. 87, 2380–2396.

    Article  PubMed  CAS  Google Scholar 

  116. Jones, W. M., Scaloni, A., and Manning, J. M. (1994) Acylaminoacyl-peptidase. Methods Enzymol. 244, 227–231.

    Article  PubMed  CAS  Google Scholar 

  117. Jones, W. M., Manning, L. R., and Manning, J. M. (1986) Enzymic cleavage of the blocked amino terminal residues of peptides. Biochem. Biophys. Res. Commun. 139, 244–250.

    Article  PubMed  CAS  Google Scholar 

  118. Jones, W. M., Scaloni, A., Bossa, F., Popowicz, A. M., Schneewind, O., and Manning, J. M. (1991) Genetic relationship between acylpeptide hydrolase and acylase, two hydrolytic enzymes with similar binding but different catalytic specificities. Proc. Natl. Acad. Sci. U.S.A. 88, 2194–2198.

    Article  PubMed  CAS  Google Scholar 

  119. Farries, T. C., Harris, A., Auffret, A. D., and Aitken, A. (1991) Removal of N-acetyl groups from blocked peptides with acylpeptide hydrolase. Stabilization of the enzyme and its application to protein sequencing. Eur. J. Biochem. 196, 679–685.

    Article  PubMed  CAS  Google Scholar 

  120. Naylor, S. L., Marshall, A., Hensel, C., Martinez, P. F., Holley, B., and Sakaguchi A. Y. (1989) The DNF15S2 locus at 3p21 is transcribed in normal lung small cell lung cancer. Genomics 4, 355–361.

    Article  PubMed  CAS  Google Scholar 

  121. Erlandsson, R., Boldog, F., Persson, B., et al. (1991) The gene from the short arm of chromosome 3, at D3F15S2, frequently deleted in renal cell carcinoma, encodes acylpeptide hydrolase. Oncogene 6, 1293–1295.

    PubMed  CAS  Google Scholar 

  122. Scaloni A., Jones, W. M., Pospischil, M., et al. (1992) Deficiency of acylpeptide hydrolase in small-cell lung carcinoma cell lines. J. Lab. Clin. Med. 120, 546–552.

    PubMed  CAS  Google Scholar 

  123. Duysen, E. G., Li, B., Xie, W., et al. (2001) Evidence for nonacetylcholinesterase targets of organophosphorus nerve agent: supersensitivity of acetylcholinesterase knockout mouse to VX lethality. J. Pharmacol. Exp. Ther. 299, 528–535.

    PubMed  CAS  Google Scholar 

  124. Richards, P. G., Johnson, M. K., and Ray, D. E. (2000) Identification of acylpeptide hydrolase as a sensitive site for reaction with organophosphorus compounds and a potential target for cognitive enhancing drugs. Mol. Pharmacol. 58, 577–583.

    PubMed  CAS  Google Scholar 

  125. Mitta, M., Miyagi, M., Kato, I., and Tsunasawa, S. (1998) Identification of the catalytic triad residues of porcine liver acylamino acid-releasing enzyme. J. Biochem. 123, 924–931.

    PubMed  CAS  Google Scholar 

  126. Raphel, V., Giardina, T., Guevel, L., et al. (1999) Cloning, sequencing and further characterization of acylpeptide hydrolase from porcine intestinal mucosa. Biochim. Biophys. Acta 1432, 371–381.

    PubMed  CAS  Google Scholar 

  127. Kiss, A. L., Szeltner, Z., Fülöp, V., and Polgár, L. (2004). His507 of acylaminoacyl peptidase stabilizes the active site conformation, not the catalytic intermediate. FEBS Lett. 571, 17–20.

    Article  PubMed  CAS  Google Scholar 

  128. Feese, M., Scaloni, A., Jones, W. M., Manning, J. M., and Remington, S. J. (1993) Crystallization and preliminary X-ray studies of human erythrocyte acylpeptide hydrolase. J. Mol. Biol. 233, 546–549.

    Article  PubMed  CAS  Google Scholar 

  129. Durand, A., Villard, C., Giardina, T., Perrier, J., Juge, N., and Puigserver, A. (2003) Structural properties of porcine intestine acylpeptide hydrolase. J. Protein Chem. 22, 183–191.

    Article  PubMed  CAS  Google Scholar 

  130. Wang, G., Gao, R., Ding, Y., et al. (2002) Crystallization and preliminary crystallographic analysis of acylamino-acid releasing enzyme from the hyperthermophilic archaeon Aeropyrum pernix. Acta Crystallogr. D 58, 1054–1055.

    Article  PubMed  CAS  Google Scholar 

  131. Bartlam, M., Wang, G., Yang, H., et al. (2004) Crystal structure of an acylpeptide hydrolase/esterase from Aeropyrum pernix K1. Structure 12, 1481–1488.

    Article  PubMed  CAS  Google Scholar 

  132. Laing, W. A. and Christeller, J. T. (1997) A plant chloroplast glutamyl proteinase. Plant Physiol. 114, 715–722.

    PubMed  CAS  Google Scholar 

  133. Yamauchi, Y., Ejiri, Y., Sugimoto, T., Sueyoshi, K., Oji, Y., and Tanaka, K. (2001) A high molecular weight glutamyl endopeptidase and its endogenous inhibitors from cucumber leaves. J. Biochem. 130, 257–261.

    PubMed  CAS  Google Scholar 

  134. Esnouf, R. M. (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. 15, 133–138.

    Google Scholar 

  135. Kraulis, P. J. (1991) MolScript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.

    Article  Google Scholar 

  136. Merritt, E. A. and Murphy, M. E. P. (1994) Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilmos Fülöp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rea, D., Fülöp, V. Structure-function properties of prolyl oligopeptidase family enzymes. Cell Biochem Biophys 44, 349–365 (2006). https://doi.org/10.1385/CBB:44:3:349

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:44:3:349

Index Entries

Navigation