Skip to main content
Log in

The endothelization of polyhedral oligomeric silsesquioxane nanocomposites

An in vitro study

  • Original Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

It has been recognized that seeding vascular bypass grafts with endothelial cells is the ideal method of improving their long-term patency rates. The aim of this study was to assess the in vitro cytocompatibility of a novel silica nanocomposite, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) and hence elicit its feasibility at the vascular interface for potential use in cardiovascular devices such as vascular grafts. Using primary human umbilical vein endothelial cells (HUVEC), cell viability and adhesion were studied using AlamarBlue assays, whereas cell proliferation on the polymer was assessed using the PicoGreen dye assay. Cellular confluence and morphology on the nanocomposite were analyzed using light and electron microscopy, respectively. Our results showed that there was no significant difference between cell viability in standard culture media and POSS-PCU. Endothelial cells were capable of adhering to the polymer within 30 min of contact (Student's t-test, p<0.05) with no difference between POSS-PCU and control cell culture plates. POSS-PCU was also capable of sustaining good cell proliferation for up to 14d even from low seeding densities (1.0×103 cells/cm2) and reaching saturation by 21 d. Microscopic analysis showed evidence of optimal endothelial cell adsorption morphology with the absence of impaired motility and morphogenesis. In conclusion, these results support the application of POSS-PCU as a suitable biomaterial scaffold in bio-hybrid vascular prostheses and biomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kidane, A. G., Salacinski, H., Tiwari, A., Bruckdorfer, K. R., and Seifalian, A. M. (2004) Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules 5, 798–813.

    Article  PubMed  CAS  Google Scholar 

  2. Baguneid, M., Murray, D., Salacinski, H. J., et al. (2004) Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes. Biotechnol. Appl. Biochem. 39, 151–157.

    Article  PubMed  CAS  Google Scholar 

  3. Kannan, R. Y., Salacinski, H. J., Sales, K., Butler, P., and Seifalian, A. M. (2005) The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 26, 1857–1875.

    Article  PubMed  CAS  Google Scholar 

  4. Salacinski, H. J., Goldner, S., Giudiceandrea, A., et al. (2001) The mechanical behavior of vascular grafts: a review. J. Biomater. Appl. 15, 241–278.

    Article  PubMed  CAS  Google Scholar 

  5. Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G., and Seifalian, A. M. (2000) Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87, 1516–1524.

    Article  PubMed  CAS  Google Scholar 

  6. Brossollet, L. J. (1992) Mechanical issues in vascular grafting: review. Int. J. Artif. Organs 15, 579–584.

    PubMed  CAS  Google Scholar 

  7. Lau, H. and Cheng, S. W. (2001) Is the preferential use of ePTFE grafts in femorofemoral bypass justified? Ann. Vasc. Surg. 15, 383–387.

    Article  PubMed  CAS  Google Scholar 

  8. Tiwari, A., DiSalvo, C., Walesby, R., Hamilton, G., and Seifalian, A. M. (2003) Mediastinal fat: a source of cells for tissue engineering of coronary artery bypass grafts. Microvasc. Res. 65, 61–64.

    Article  PubMed  Google Scholar 

  9. Tiwari, A., Kidane, A., Salacinski, H. J., Punshon, G., Hamilton, G., and Seifalian, A. M. (2003) Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine-glycine-aspartate (RGD). Eur. J. Vasc. Endovasc. Surg. 25, 325–329.

    Article  PubMed  CAS  Google Scholar 

  10. Deutsch, M., Meinhart, J., Fischlein, T., Preiss, P., and Zilla, P. (1999) Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients: a 9-year experience. Surgery 126, 847–855.

    PubMed  CAS  Google Scholar 

  11. Meinhart, J. G., Deutsch, M., Fischlein, T., Howanietz, N., Froschl, A., and Zilla, P. (2001) Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann. Thorac Surg. 71, S327-S331.

    Article  PubMed  CAS  Google Scholar 

  12. Seifalian, A. M., Tiwari, A., Hamilton, G., and Salacinski, H. J. (2002) Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif. Organs 26, 307–320.

    Article  PubMed  Google Scholar 

  13. Zilla, P., Fasol, R., Deutsch, M. et al. (1987) Endothelial cell seeding of polytetrafluoroethylene vascular grafts in humans: a preliminary report. J. Vasc. Surg. 6, 535–541.

    Article  PubMed  CAS  Google Scholar 

  14. Tiwari, A., Cheng, K., Salacinski, H. J., Hamilton, G., and Seifalian, A. M. (2003) Improving compliance at peripheral arterial and cardiovascular anastomosis: the effect of suture materials and techniques. Eur. J. Vasc. Endovasc. Surg. 25, 325–329.

    Article  PubMed  CAS  Google Scholar 

  15. Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G., and Seifalian, A. M. (2000) Compliance properties of conduits used in vascular reconstruction. Br. J. Surg. 87, 1516–1524.

    Article  PubMed  CAS  Google Scholar 

  16. Berrocal, M. J., Badr, I. H., Gao, d., and Bachas, L. G. (2001) Reducing the thrombogenicity of ion-selective electrode membranes through the use of a silicone-modified segmented polyurethane. Anal. Chem. 73, 5328–5333.

    Article  PubMed  CAS  Google Scholar 

  17. Park, J. H. and Bae, Y. H. (2002) Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion. Biomaterials 23, 1797–1808.

    Article  PubMed  CAS  Google Scholar 

  18. Nyilas, E. and Ward, R. S., Jr. (1977) Development of blood-compatible elastomers. V. Surface structure and blood compatibility of avcothane elastomers. J. Biomed. Mater. Res. 11, 69–84.

    Article  PubMed  CAS  Google Scholar 

  19. Hoffman, D., Gong, G., Pinchuk, L., and Sisto, D. (1993) Safety and intracardiac function of a silicone-polyurethane elastomer designed for vascular use. Clin. Mater. 13, 95–100.

    Article  PubMed  CAS  Google Scholar 

  20. Schubert, M. A., Wiggins, M. J., Anderson, J. M., and Hiltner, A. (1997) Role of oxygen in biodegradation of poly(etherurethane urea) elastomers. J. Biomed. Mater. Res. 34, 519–530.

    Article  PubMed  CAS  Google Scholar 

  21. Kao, W. J. (1999) Evaluation of protein-modulated macrophage behavior on biomaterials: designing biomimetic materials for cellular engineering. Biomaterials 20, 2213–2221.

    Article  PubMed  CAS  Google Scholar 

  22. Salacinski, H. J., Hancock, S., and Seifalian, A. M. (2005) Polymer for use in conduits, medical devies and biomedical surface modification. Int. App. No. PCT/GB2005/000189.

  23. Seifalian, A. M., Salacinski, H. J., Punshon, G., Krijgsman, B., and Hamilton, G. (2001) A new technique for measuring the cell growth and metabolism of endothelial cells seeded on vascular prostheses. J. Biomed. Mater. Res. 55, 637–644.

    Article  PubMed  CAS  Google Scholar 

  24. Punshon, G., Vara, D. S., Sales, K. M., Kidane, A. G., Salacinski, H. J., and Seifalian, A. M. (2005) Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane. Biomaterials 26, 6271–6279.

    Article  PubMed  CAS  Google Scholar 

  25. International Standards Organization (ISO). (1992) Biological evaluation of medical devices: Tests for cytotoxicity: In vitro methods. Document No.: ISO 10993-5. ISO, Geneva, Switzerland, pp. 1–7.

    Google Scholar 

  26. Singer, V. L., Jones, L. J., Yue, S. T., and Haugland, R. P. (1997) Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 249, 228–238.

    Article  PubMed  CAS  Google Scholar 

  27. Park, J. C., Park, B. J., Lee, D. H., Suh, H., Kim, D. G., and Kwon, O. H. (2002) Evaluation of the cytotoxicity of polyetherurethane (PU) film containing zinc diethyldithiocarbamate (ZDEC) on various cell lines. Yonsei Med. J. 43, 518–526.

    PubMed  CAS  Google Scholar 

  28. Cenni, E., Granchi, D., Verri, E., Remiddi, G., Cavedagna, D., and Di Leo, A. (2001) Evaluation of endothelial cell integrins afterin vitro contact with polyethylene terephthalate. J. Mater. Sci. Mater. Med. 12, 345–349.

    Article  PubMed  CAS  Google Scholar 

  29. Kidane, A. G., Salacinski, H. J., Punshon, G., Ramesh, B., Srai, K. S., and Seifalian, A. M. (2003) Synthesis and evaluation of amphiphilic RGD derivatives: uses for solvent casting in polymers and tissue engineering applications. Med. Biol. Eng. Comput. 41, 740–745.

    Article  PubMed  CAS  Google Scholar 

  30. Hamm, C. W., Schaachinger, V., Munzel, T., et al. (2003) Peptide-treated stent graft for the treatment of saphenous vein graft lesions: first clinical results. J. Invasive Cardiol. 15, 557–560.

    PubMed  Google Scholar 

  31. Lehle, K., Buttstaedt, J., and Birnbaum, D. E. (2003) Expression of adhesion molecules and cytokines in vitro by endothelial cells seeded on various polymer surfaces coated with titaniumcarboxonitride. J. Biomed. Mater. Res. 65A, 393–401.

    Article  CAS  Google Scholar 

  32. Ai, H., Lvov, Y. M., Mills, D. K., Jennings, M., Alexander, J. S., and Jones, S. A. (2003) Coating and selective deposition of nanofilm on silicone rubber for cell adhesion and growth. Cell Biochem. Biophys. 38, 103–114.

    Article  PubMed  CAS  Google Scholar 

  33. Ai, H., Mills, D. K., Jonathan, A. S., and Jones, S. A. (2002) Celatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth. In Vitro Cell Dev. Biol. Anim. 38, 487–492.

    Article  PubMed  CAS  Google Scholar 

  34. Lateef, S. S., Boateng, S., Hartman, T. J., Crot, C. A., Russell, B., and Hanley, L. (2002) GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials 23, 3159–3168.

    Article  PubMed  CAS  Google Scholar 

  35. Salacinski, H. J., Tiwari, A., Hamilton, G., and Seifalian, A. M. (2001) Cellular engineering of vascular bypass grafts: role of chemical coatings for enhancing endothelial cell attachment. Med. Biol. Eng. Comput. 39, 609–618.

    Article  PubMed  CAS  Google Scholar 

  36. Wilsnack, R. E. (1976) Quantitative cell culture biocompatibility testing of medical devices and correlation to animal tests. Biomater. Med. Devices Artif. Organs 4, 235–261.

    PubMed  CAS  Google Scholar 

  37. Hesse, Y., Kampmeier, J., Lang, G. K., Baldysiak-Figiel, A., and Lang, G. E. (2003) Adherence and viability of porcine lens epithelial cells on three different IOL materials in vitro. Graefes Arch. Clin. Exp. Ophthalmol. 241, 823–826.

    Article  PubMed  CAS  Google Scholar 

  38. Lichtenhan, J. D. (1995) Polyhedral oligomeric silsesquioxanes: building blocks for silsesquioxane-based polymers and hybrid materials. Comm. Inorg. Chem. 17, 115–130.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Seifalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, R.Y., Salacinski, H.J., Sales, K.M. et al. The endothelization of polyhedral oligomeric silsesquioxane nanocomposites. Cell Biochem Biophys 45, 129–136 (2006). https://doi.org/10.1385/CBB:45:2:129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CBB:45:2:129

Index Entries

Navigation