Skip to main content
Log in

Synaptic proteins in Alzheimer’s disease

  • Peptide Drug Design, Pharmacology, And Delivery In Health And Disease
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Chromogranin A, chromogranin B, and secretogranin II are acidic proteins which are stored in large dense core vesicles of neurons. An antiserum, raised against a synthetic peptide (PE-11), present in the chromogranin B molecule, and an antiserum raised against secretoneurin contained in the secretogranin II sequence, was used to localize these peptides together with chromogranin A in the human hippocampal formation. The distribution of these peptides was investigated in Alzheimer’s disease and compared to control subjects.

Chromogranin A, chromogranin B, and secretogranin II are distinctly distributed with an overlap in their distribution patterns. They were only detected in neuronal structures. The highest density of immunoreactivity was found for chromogranin B. A layer specific distribution was especially obvious in the inner molecular layer of the dentate gyrus as secretoneurin-like immunoreactivity was restricted to its innermost part whereas that of chromogranin B was highly concentrated throughout the inner molecular layer.

In Alzheimer’s disease, about 10 to 20% of the amyloid-immunoreactive plaques contained either chromogranin A, chromogranin B or secretoneurin. The density of secretoneurin—and chromogranin B-like immunoreactivity was significantly reduced in the inner molecular layer of the dentate gyrus, the CA1 area, the subiculum and in layers II, III and V of the entorhinal cortex.

The present study demonstrates that chromogranin peptides are markers for human hippocampal pathways. They are particularly suitable to study nerve fibers, terminating at the inner molecular layer of the dentate gyrus. Chromogranin peptides have a potential as neuronal markers for synaptic degeneration in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt T. (2001) Alzheimer’s disease as a disorder of mechanisms underlying structural brain self-organization. Neuroscience 102, 723–765.

    Article  PubMed  CAS  Google Scholar 

  • Braak H. and Braak E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82, 239–259.

    Article  CAS  Google Scholar 

  • Chanat E., Weiss U., Huttner W. B., and Tooze S. A. (1993) Reduction of the disulfide bond of chromogranin B (secretogranin I) in the trans-Golgi network causes its missorting to the constitutive secretory pathways. EMBO J 12, 2159–2168.

    PubMed  CAS  Google Scholar 

  • Davidsson P. and Blennow K. (1998) Neurochemical dissection of synaptic pathology in Alzheimer’s disease. Int. Psychogeriatr. 10, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Folstein M. F., Folstein S. E., and McHugh P. R. (1975) “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Forss-Petter S., Danielson P., Battenberg E., Bloom F., and Sutcliffe J. G. (1989) Nucleotide sequence and cellular distribution of rat chromogranin B (secretogranin I) mRNA. J. Mol. Neurosci. 1, 63–75.

    PubMed  CAS  Google Scholar 

  • Frotscher M., Seress L., Schwerdtfeger W. K., and Buhl E. (1991) The mossy cells of the fascia dentata: a comparative study of their fine structure and synaptic connections in rodents and primates. J. Comp. Neurol. 312, 145–163.

    Article  PubMed  CAS  Google Scholar 

  • Gerdes H. H., Phillips E., and Huttner W. B. (1988) The primary structure of rat secretogranin II deduced from a cDNA sequence. Nucl. Acids Res. 16, 11,811.

    Article  CAS  Google Scholar 

  • Gozes I. and Brenneman D. E. (2000) A new concept in the pharmacology of neuroprotection. J. Mol. Neurosci. 14, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Heinonen O., Soininen H., Sorvari H., Kosunen O., Paljarvi L., Koivisto E., and Riekkinen-P. J. S. (1995) Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer’s disease. Neuroscience 64, 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Huttner W. B., Gerdes H. H., and Rosa P. (1991) The granin (chromogranin/secretogranin) family. TIBS 16, 27–30.

    PubMed  CAS  Google Scholar 

  • Hyman B. T. (1998) New neuropathological criteria for Alzheimer disease. Arch. Neurol. 55, 1174–1176.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K. A. (1997) Neuropathological staging of Alzheimer-related lesions: the challenge of establishing relations to age. Neurobiol. Aging 18, 369–375.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger K. A. and Bancher C. (1998) Neuropathology of Alzheimer’s disease: a critical update. J. Neural Transm. Suppl. 54, 77–95.

    PubMed  CAS  Google Scholar 

  • Kaufmann W. A., Barnas U., Humpel C., et al. (1998) Synaptic loss reflected by secretoneurin-like immunoreactivity in the human hippocampus in Alzheimer’s disease. Europ. J. Neurosci. 10, 1084–1094.

    Article  CAS  Google Scholar 

  • Kirchmair R., Hogue-Angeletti R., Gutierrez J., Fischer-Colbrie R., and Winkler H. (1993) Secretoneurin—a neuropeptide generated in brain, adrenal medulla and other endocrine tissues by proteolytic processing of secretogranin II (chromogranin C). Neuroscience 53, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Knowles R. B., Gomez-Isla T., and Hyman B. T. (1998) Abeta associated neuropil changes: correlation with neuronal loss and dementia. J. Neuropathol. Exp. Neurol. 57, 1122–1130.

    PubMed  CAS  Google Scholar 

  • Kroesen S., Marksteiner J., Leitner B., Hogue Angeletti R., Fischer Colbrie R., and Winkler H. (1996) Rat brain: distribution of immunoreactivity of PE-11, a peptide derived from chromogranin B. Eur. J. Neurosci. 8, 2679–2689.

    Article  PubMed  CAS  Google Scholar 

  • Lassmann H., Weiler R., Fischer P., et al. (1992) Synaptic pathology in Alzheimer’s disease: immunological data for markers of synaptic and large dense-core vesicles. Neuroscience 46, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Mahata S. K., Mahata M., Marksteiner J., Sperk G., Fischer-Colbrie R., and Winkler H. (1991) Distribution of mRNAs for chromogranin A and B and secretogranin II in rat brain. Europ. J. Neurosci. 3, 895–904.

    Article  Google Scholar 

  • Mahata S. K., Mahata M., Parmer R. J., and O’Connor D. T. (1999) Desensitization of catecholamine release. The novel catecholamine release-inhibitory peptide catestatin (chromogranin A 344–364) acts at the receptor to prevent nicotinic cholinergic tolerance. J. Biol. Chem. 274, 2920–2928.

    Article  PubMed  CAS  Google Scholar 

  • Marksteiner J., Kirchmair R., Mahata S. K., et al. (1993a) Distribution of secretoneurin, a peptide derived from secretogranin II, in rat brain: an immunocytochemical and radioimmunological study. Neuroscience 54, 923–944.

    Article  PubMed  CAS  Google Scholar 

  • Marksteiner J., Saria A., Kirchmair R., et al. (1993b) Distribution of secretoneurin-like immunoreactivity in comparison with substance P- and enkephalin-like immunoreactivities in various human forebrain regions. Eur. J. Neurosci. 5, 1573–1585.

    Article  PubMed  CAS  Google Scholar 

  • Marksteiner J., Bauer R., Kaufmann W. A., Weiss E., and Barnas U. M. J. (1999) PE-11, a peptide derived from chromogranin B, in the human brain. Neurosci. 91, 1155–1170.

    Article  CAS  Google Scholar 

  • Marksteiner J., Lechner T., Kaufmann W. A., et al. (2000) Distribution of chromogranin B-like immunoreactivity in the human hippocampus and its changes in Alzheimer’s disease. Acta Neuropathol. (Berl.) 100, 205–212.

    Article  CAS  Google Scholar 

  • Masliah E., Terry R. D., Alford M., DeTeresa R., and Hansen L. A. (1991) Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer’s disease. Am. J. Pathol. 138, 235–246.

    PubMed  CAS  Google Scholar 

  • McKhann G., Drachman D., Folstein M., Katzman R., Price D., and Stadlan E. M. (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.

    PubMed  CAS  Google Scholar 

  • Munoz D. G. (1990) The distribution of chromogranin A-like immunoreactivity in the human hippocampus coincides with the pattern of resistance to epilepsy-induced neuronal damage. Ann. Neurol. 27, 266–275.

    Article  PubMed  CAS  Google Scholar 

  • Reisberg B., Ferris S. H., De Leon M. J., and Crook T. (1982) The Global Deterioration Scale for assessment of primary degenerative dementia. Am. J. Psychiatry 139, 1136–1139.

    PubMed  CAS  Google Scholar 

  • Salahuddin M. J., Sekiya K., Ghatei M. A., and Bloom S. R. (1989) Regional distribution of chromogranin B 420–493-like immunoreactivity in the pituitary gland and central nervous system of man, guinea-pig and rat. Neurosci. 30, 231–240.

    Article  CAS  Google Scholar 

  • Scheff S. W. and Price D. A. (1998) Synaptic density in the inner molecular layer of the hippocampal dentate gyrus in Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 57, 1146–1153.

    Article  PubMed  CAS  Google Scholar 

  • Solodkin A. and Van Hoesen G. W. (1996) Entorhinal cortex modules of the human brain. J. Comp. Neurol. 365, 610–617.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P., Hodgson A. J., DePotter R. W., et al. (1984) Chromogranin immunoreactivity in the central nervous system. Immunochemical characterisation, distribution and relationship to catecholamine and enkephalin pathways. Brain Res. 320, 193–230.

    PubMed  CAS  Google Scholar 

  • Thiele C. and Huttner W. B. (1998) The disulfide-bonded loop of chromogranins, which is essential for sorting to secretory granules, mediates homodimerization. J. Biol. Chem. 273, 1223–1231.

    Article  PubMed  CAS  Google Scholar 

  • Winkler H. and Fischer-Colbrie R. (1992) The chromogranins A and B: The first 25 years and future perspectives. Neuroscience 49, 497–528.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Marksteiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marksteiner, J., Kaufmann, W.A., Gurka, P. et al. Synaptic proteins in Alzheimer’s disease. J Mol Neurosci 18, 53–63 (2002). https://doi.org/10.1385/JMN:18:1-2:53

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/JMN:18:1-2:53

Index Entries

Navigation