Skip to main content
Log in

Molecular substrates of potassium spatial buffering in glial cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

It is generally accepted that the foremost mechanism for the buffering of K+ from the extracellular space ([K+]o) in the brain is “K+ spatial buffering.” This is the process by which glial cells dissipate local K+ gradients by transferring K+ ions from areas of high to low [K+]o. These glial K+ fluxes are mediated mainly by inwardly rectifying K+ (Kir) channels. The K+ spatial buffering hypothesis has been tested and confirmed in the retina, in which is has been termed as “K+ siphoning”. In Müller cells, the primary glial cells of the retina, Kir channels are distributed in a highly non-uniform manner, exhibiting high concentrations in membrane domains facing the vitreous humor (endfeet) and in proximity to the blood vessels (perivascular processes). Such non-uniform distribution of Kir channels facilitates directed K+ fluxes in the retina from the synaptic plexiform layers to the vitreous humor and blood vessels. Recent molecular and electrophysiological studies in Müller cells have revealed a high degree of complexity in terms of Kir channel subunit composition, mechanisms of subcellular localization, and regulation. How such complexity fits into their proposed role in buffering [K+]o in retina is the main topic of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schousboe A. (2003) Role of astrocytes in the maintenance and modulation of glutamatergic and GABAergic neurotransmission. Neurochem. Res. 28, 347–352.

    Article  PubMed  CAS  Google Scholar 

  2. Hatten M.E. (2002) New directions in neuronal migration. Science 297, 1660–1663.

    Article  PubMed  CAS  Google Scholar 

  3. Araque A., Carmignoto G., and Haydon P.G. (2001) Dynamic signaling between astrocytes and neurons. Annu. Rev. Physiol. 63, 795–813.

    Article  PubMed  CAS  Google Scholar 

  4. Nicholson C., Chen K.C., Hrabetova S., Tao L. (2002) Diffusion of molecules in brain extracellular space: theory and experiment. Prog. Brain Res. 125, 129–154.

    Article  Google Scholar 

  5. Coles J.A. and Poulain D.A. (1991) Extracellular K+ in the supraoptic nucleus of the rat during reflex bursting activity by oxytocin neurones. J. Physiol. 439, 383–409.

    PubMed  CAS  Google Scholar 

  6. Amedee T., Robert A., and Coles J.A. (1997) Potassium homeostasis and glial energy metabolism. Glia 21, 46–55.

    Article  PubMed  CAS  Google Scholar 

  7. Orkand R.K., Nicholls J.G., and Kuffler S.W. (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 788–806.

    PubMed  CAS  Google Scholar 

  8. Gardner-Medwin A.R. (1983) A study of the mechanisms by which potassium moves through brain tissue in the rat. J. Physiol. 335, 353–374.

    PubMed  CAS  Google Scholar 

  9. Gardner-Medwin A.R. and Nicholson C. (1983) Changes of extracellular potassium activity induced by electric current through brain tissue in the rat. J. Physiol. 335, 375–392.

    PubMed  CAS  Google Scholar 

  10. Karwoski C.J., Lu H.K., and Newman E.A. (1989) Spatial buffering of light-evoked potassium increases by retinal Müller (glial) cells. Science 244, 578–580.

    Article  PubMed  CAS  Google Scholar 

  11. Sontheimer. (1994) Voltage-dependent ion channels in glial cells. Glia 11, 156–172.

    Article  PubMed  CAS  Google Scholar 

  12. Adrian R.H. (1969) Rectification in muscle membrane. Prog. Biophys. Mol. Biol. 19, 339–369.

    PubMed  CAS  Google Scholar 

  13. Hagiwara S. and Jaffe L.A. (1979) Electrical properties of egg cell membranes. Annu. Rev. Biophys. Bioeng. 8, 385–416.

    Article  PubMed  CAS  Google Scholar 

  14. Doupnik C.A., Davidson N., and Lester H.A. (1995) The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5, 268–277.

    Article  PubMed  CAS  Google Scholar 

  15. Reimann F. and Ashcroft F.M. (1999) Inwardly rectifying potassium channels. Curr. Opin. Cell Biol. 11, 503–508.

    Article  PubMed  CAS  Google Scholar 

  16. Yi B.A., Minor D.L., Jr., Lin Y.F., Jan Y.N., and Jan L.Y. (2001) Controlling potassium channel activities: Interplay between the membrane and intracellular factors. Proc. Natl. Acad. Sci. USA 98, 11,016–11,023.

    CAS  Google Scholar 

  17. Stanfield P.R., Nakajima S., and Nakajima Y. (2002) Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0. Rev. Physiol. Biochem. Pharmacol. 145, 47–179.

    PubMed  CAS  Google Scholar 

  18. Isomoto S., Kondo C., and Kurachi Y. (1997) Inwardly rectifying potassium channels: their molecular heterogeneity and function. Jpn. J. Physiol. 47, 11–39.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols C.G. and Lopatin A.N. (1997) Inward rectifier potassium channels. Annu. Rev. Physiol. 59, 171–191.

    Article  PubMed  CAS  Google Scholar 

  20. Ruppersberg J.P. (2000) Intracellular regulation of inward rectifier K+ channels. Pflugers Arch. 441, 1–11.

    Article  PubMed  CAS  Google Scholar 

  21. Dascal N. (1997) Signalling via the G protein-activated K+ channels. Cell Signal 9, 551–573.

    Article  PubMed  CAS  Google Scholar 

  22. Mark M.D. and Herlitze S. (2000) G-protein mediated gating of inward-rectifier K+ channels. Eur. J. Biochem. 267, 5830–5836.

    Article  PubMed  CAS  Google Scholar 

  23. Aguilar-Bryan L. and Bryan J. (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr. Rev. 20, 101–135.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki Y., Yasuoka Y., Shimohama T., Nishikitani M., Nakamura N., et al. (2003) Expression of the K+ channel Kir7.1 in the developing rat kidney: Role in K+ excretion. Kidney Int. 63, 969–975.

    Article  PubMed  CAS  Google Scholar 

  25. Kohda Y., Ding W., Phan E., Housini I., Wang J., et al. (1998) Localization of the ROMK potassium channel to the apical membrane of distal nephron in rat kidney. Kidney Int 54, 1214–1223.

    Article  PubMed  CAS  Google Scholar 

  26. Xu J.Z., Hall A.E., Peterson L.N., Bienkowaski M.J., Eessalu T.E., Hebert S.C. (1997) Localization of the ROMK protein on apical membranes of rat kidney nephron segments. Am. J. Physiol. 273, F739-F748.

    PubMed  CAS  Google Scholar 

  27. Derst C., Hirsch J.R., Preisig-Müller R., Wischmeyer E., Karschin A., et al. (2001) Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney. Kidney Int. 59, 2197–2205.

    PubMed  CAS  Google Scholar 

  28. Ookata K., Tojo A., Suzuki Y., Nakamura N., Kimura K., et al. (2000) Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J. Am. Soc. Nephrol. 11, 1987–1994.

    PubMed  CAS  Google Scholar 

  29. Krapivinsky G., Medina I., Eng L., Krapivinsky L., Yang Y., and Clapham D. E. (1998) A novel inward rectifier K+ channel with unique pore properties. Neuron 20, 995–1005.

    Article  PubMed  CAS  Google Scholar 

  30. Nakamura N., Suzuki Y., Sakuta H., Ookata K., Kawahara K., and Hirose S. (1999) Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+, K+ ATPase. Biochem. J. 342, 329–336.

    Article  PubMed  CAS  Google Scholar 

  31. Doring F., Derst C., Wischmeyer E., Karschin C., Schneggenburger R., et al. (1998) The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J. Neurosci. 18, 8625–8636.

    PubMed  CAS  Google Scholar 

  32. Shimura M., Yuan Y., Chang J.T., Zhang S., Campochiaro P.A., et al. (2001) Expression and permeation properties of the K+ channel Kir7.1 in the retinal pigment epithelium. J. Physiol. 531, 329–346.

    Article  PubMed  CAS  Google Scholar 

  33. Kusaka S., Inanobe A., Fujita A., Makino Y., Tanemoto M., et al. (2001) Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. J. Physiol. 531, 27–36.

    Article  PubMed  CAS  Google Scholar 

  34. Poopalasundaram S., Knott C., Shamotienko O.G., Foran P.G., Dolly J.O., et al. (2000) Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. Glia 30, 362–372.

    Article  PubMed  CAS  Google Scholar 

  35. Li L., Head V., and Timpe L.C. (2001) Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. Glia 33, 57–71.

    Article  PubMed  CAS  Google Scholar 

  36. Higashi K., Fujita A., Inanobe A., Tanemoto M., Doi K., et al. (2001) An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am. J. Physiol. Cell Physiol. 281, C922-C931.

    PubMed  CAS  Google Scholar 

  37. Stonehouse A.H., Pringle J.H., Norman R.I., Stanfield P.R., Conley E.C., and Brammar W.J. (1999) Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies [In Process Citation]. Histochem. Cell Biol. 112, 457–465.

    Article  PubMed  CAS  Google Scholar 

  38. Leonoudakis D., Mailliard W., Wingerd K., Clegg D., and Vandenberg C. (2000) Inward rectifier potassium channel Kir2.2 is associated with synapse- associated protein SAP97. J. Cell Sci. 114, 987–998.

    Google Scholar 

  39. Nagelhus E., Horio Y., Inanobe A., Fujita A., Haug F., et al. (1999) Immunogold evidence suggests that coupling of K+ siphoning and water transport in rat retinal Müller cells is mediated by coenrichment of Kir4.1 and AQP4 in specific membrane domains. Glia 26, 47–54.

    Article  PubMed  CAS  Google Scholar 

  40. Kofuji P., Biedermann B., Siddharthan V., Raap M., Iandiev I., et al. (2002) Kir potassium channel subnit expression in retinal glial cells: implications for spatial potassium buffering. Glia 39, 292–303.

    Article  PubMed  Google Scholar 

  41. Ishii M., Fujita A., Iwai K., Kusaka S., Higashi K., et al. (2003) Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina. Am. J. Physiol. Cell Physiol. 285, C260-C267.

    PubMed  CAS  Google Scholar 

  42. Kubo Y., Baldwin T.J., Jan Y.N., and Jan L.Y. (1993) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127–133.

    Article  PubMed  CAS  Google Scholar 

  43. Zhou H., Tate S.S., and Palmer L.G. (1994) Primary structure and functional properties of an epithelial K channel. Am. J. Physiol. 266, C809-C824.

    PubMed  CAS  Google Scholar 

  44. Lagrutta A.A., Bond C.T., Xia X.M., Pessia M., Tucker S., and Adelman J.P. (1996) Inward rectifier potassium channels. Cloning, expression and structure-function studies. Jpn. Heart. J. 37, 651–660.

    PubMed  CAS  Google Scholar 

  45. Tanemoto M., Kittaka N., Inanobe A., Kurachi Y. (2000) In vivo formation of a proton-sensitive K+ channel by heteromeric subunit assembly of Kir5.1 with Kir4.1. J. Physiol. 525 Pt 3, 587–592.

    Article  PubMed  CAS  Google Scholar 

  46. Cui N., Giwa L.R., Xu H., Rojas A., Abdulkadir L., and Jiang C. (2001) Modulation of the heteromeric Kir4.1-Kir5.1 channels by P(CO(2)) at physiological levels. J. Cell Physiol. 189, 229–236.

    Article  PubMed  CAS  Google Scholar 

  47. Raab-Graham K.F. and Vandenberg C.A. (1998) Tetrameric subunit structure of the native brain inwardly rectifying potassium channel Kir 2.2. J. Biol. Chem. 273, 19,699–19,707.

    Article  CAS  Google Scholar 

  48. Preisig-Müller R., Schlichthorl G., Goerge T., Heinen S., Bruggemann A., et al. (2002) Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen’s syndrome. Proc. Natl. Acad. Sci. USA 99, 7774–7779.

    Article  PubMed  CAS  Google Scholar 

  49. Tucker S.J., Imbrici P., Salvatore L., D’Adamo M.C., and Pessia M. (2000) pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia. J. Biol. Chem. 275, 16,404–16,407.

    CAS  Google Scholar 

  50. Xu H., Cui N., Yang Z., Qu Z., and Jiang C. (2000) Modulation of Kir4.1 and Kir5.1 by hypercapnia and intracellular acidosis. J. Physiol. 524 Pt 3, 725–735.

    Article  PubMed  CAS  Google Scholar 

  51. Matthias K., Kirchhoff F., Seifert G., Huttmann K., Matyash M., et al. (2003) Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758.

    PubMed  CAS  Google Scholar 

  52. Steinhauser C., Berger T., Frotscher M., and Kettenmann H. (1992) Heterogeneity in the membrane current pattern of identified glial cells in the hippocampal slice. Eur. J. Neurosci. 4, 472–484.

    Article  PubMed  Google Scholar 

  53. Newman E. and Reichenbach A. (1996) The Müller cell: a functional element of the retina. Trends Neurosci. 19, 307–312.

    Article  PubMed  CAS  Google Scholar 

  54. Newman E. (1996) Regulation of extracellular K+ and pH by polarized ion fluxes in glial cells: the retinal Müller cell. The Neuroscientist 2, 109–117.

    Article  CAS  Google Scholar 

  55. Brew H., Gray P., Mobbs P., and Attwell D. (1986) Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324, 466–468.

    Article  PubMed  CAS  Google Scholar 

  56. Newman E. (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. J. Neurosci 13, 3333–3345.

    PubMed  CAS  Google Scholar 

  57. Solessio E., Linn D.M., Perlman I., and Lasater E.M. (2000) Characterization with barium of potassium currents in turtle retinal Müller cells. J. Neurophysiol. 83, 418–430.

    PubMed  CAS  Google Scholar 

  58. Reichelt W., Müller T., Pastor A., Pannicke T., Orkand P.M., et al. (1993) Patch-clamp recording from Müller (glial) cell endfeet in the intact isolated retina and acutely isolated Müller cells of mouse and guinea-pig. Neuroscience 57, 599–613.

    Article  PubMed  CAS  Google Scholar 

  59. Chao T., Grosche J., Friedrich K., Biedermann B., Francke M., et al. (1997) Comparative studies on mammalian Müller (retinal glial) cells. J. Neurocytol. 26, 439–454.

    Article  PubMed  CAS  Google Scholar 

  60. Felmy F., Pannicke T., Richt J.A., Reichenbach A., and Guenther E. (2001) Electrophysiological properties of rat retinal Müller (glial) cells in postnatally developing and in pathologically altered retinae. Glia 34, 190–199.

    Article  PubMed  CAS  Google Scholar 

  61. Pannicke T., Bringmann A., and Reichenbach A. (2002) Electrophysiological characterization of retinal Müller glial cells from mouse during postnatal development: comparison with rabbit cells. Glia 38, 268–272.

    Article  PubMed  Google Scholar 

  62. Kusaka S. and Puro D. (1997) Intracellular ATP activates inwardly rectifying K+ channels in human and monkey retinal Müller (glial) cells. J. Physiol. (Lond) 500, 593–604.

    CAS  Google Scholar 

  63. Newman E.A. (1984) Regional specialization of retinal glial cell membrane. Nature 309, 155–157.

    Article  PubMed  CAS  Google Scholar 

  64. Newman E.A. (1987) Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study. J. Neurosci. 7, 2423–2432.

    PubMed  CAS  Google Scholar 

  65. Newman E.A., Frambach D.A., and Odette L.L. (1984) Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science 225, 1174–1175.

    Article  PubMed  CAS  Google Scholar 

  66. Ishii M., Horio Y., Tada Y., Hibino H., Inanobe A., et al. (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Müller cell membrane: their regulation by insulin and laminin signals. J. Neurosci. 17, 7725–7735.

    PubMed  CAS  Google Scholar 

  67. Tada Y., Horio Y., and Kurachi Y. (1998) Inwardly rectifying K+ channel in retinal Müller cells: comparison with the KAB-2/Kir4.1 channel expressed in HEK293T cells. Jpn. J. Physiol. 48, 71–80.

    Article  PubMed  CAS  Google Scholar 

  68. Kofuji P., Ceelen P., Zahs K.R., Surbeck L.W., Lester H.A., and Newman E.A. (2000) Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J. Neurosci. 20, 5733–5740.

    PubMed  CAS  Google Scholar 

  69. Sheng M. and Sala C. (2001) PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29.

    Article  PubMed  CAS  Google Scholar 

  70. Sheng M. and Wyszynsky M. (1997) Ion channel targeting in neurons. BioEssays 19, 847–853.

    Article  PubMed  CAS  Google Scholar 

  71. Horio Y., Hibino H., Inanobe A., Yamada M., Ishii M., et al. (1997) Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD-95/SAP90. J. Biol. Chem. 272, 12,885–12,888.

    Article  CAS  Google Scholar 

  72. Neely J.D., Amiry-Moghaddam M., Ottersen O.P., Froehner S.C., Agre P., and Adams M.E. (2001) Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein. Proc. Natl. Acad. Sci. USA 98, 14,108–14,113.

    Article  CAS  Google Scholar 

  73. Amiry-Moghaddam M., Otsuka T., Hurn P.D., Traystman R.J., Haug F.M., et al. (2003) An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc. Natl. Acad. Sci. USA 100, 2106–2111.

    Article  PubMed  CAS  Google Scholar 

  74. Blake D.J., Hawkes R., Benson M.A., and Beesley P.W. (1999) Different dystrophin-like complexes are expressed in neurons and glia. J. Cell Biol. 147, 645–658.

    Article  PubMed  CAS  Google Scholar 

  75. Claudepierre T., Mornet D., Pannicke T., Forster V., Dalloz C., et al. (2000) Expression of Dp71 in Müller glial cells: a comparison with utrophin- and dystrophin-associated proteins. Investig. Ophthalmol. Vis. Sci. 41, 294–304.

    CAS  Google Scholar 

  76. Anderson J.L., Head S.I., Rae C., and Morley J.W. (2002) Brain function in Duchenne muscular dystrophy. Brain 125, 4–13.

    Article  PubMed  CAS  Google Scholar 

  77. Pillers D.A. (1999) Dystrophin and the retina. Mol. Genet. Metab. 68, 304–309.

    Article  PubMed  CAS  Google Scholar 

  78. Dalloz C., Claudepierre T., Rodius F., Mornet D., Sahel J., and Rendon A. (2001) Differential distribution of the members of the dystrophin glycoprotein complex in mouse retina: effect of the mdx (3Cv) mutation. Mol. Cell Neurosci. 17, 908–920.

    Article  PubMed  CAS  Google Scholar 

  79. Howard P.L., Dally G.Y., Wong M.H., Ho A., Weleber R.G., et al. (1998) Localization of dystrophin isoform Dp71 to the inner limiting membrane of the retina suggests a unique functional contribution of Dp71 in the retina. Hum. Mol. Genet. 7, 1385–1391.

    Article  PubMed  CAS  Google Scholar 

  80. Pillers D.A., Weleber R.G., Green D.G., Rash S.M., Dally G.Y., et al. (1999) Effects of dystrophin isoforms on signal transduction through neural retina: genotype-phenotype analysis of duchenne muscular dystrophy mouse mutants. Mol. Genet. Metab. 66, 100–110.

    Article  PubMed  CAS  Google Scholar 

  81. Cox G.A., Phelps S.F., Chapman V.M., and Chamberlain J.S. (1993) New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin. Nat. Genet. 4, 87–93.

    Article  PubMed  CAS  Google Scholar 

  82. Connors N.C. and Kofuji P. (2002) Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells. J. Neurosci. 22, 4321–4327.

    PubMed  CAS  Google Scholar 

  83. Claudepierre T., Dalloz C., Mornet D., Matsumura K., Sahel J., and Rendon A. (2000) Characterization of the intermolecular associations of the dystrophin-associated glycoprotein complex in retinal Müller glial cells. J. Cell Sci. 113, Pt 19, 3409–3417.

    PubMed  CAS  Google Scholar 

  84. Rando T.A. (2001) The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve 24, 1575–1594.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Kofuji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kofuji, P., Connors, N.C. Molecular substrates of potassium spatial buffering in glial cells. Mol Neurobiol 28, 195–208 (2003). https://doi.org/10.1385/MN:28:2:195

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:28:2:195

Index Entries

Navigation