Skip to main content
Log in

Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) have been considered for some time only in the context of oxidative stress-induced cell damage. In this review, we discuss the growing body of evidence that implicates ROS in general, and hydrogen peroxide (H2O2) in particular, in regulatory events underlying synaptic plasticity. H2O2 is regarded in this context as a specific diffusible signaling molecule. The action of H2O2 is assumed to be carried out via the release of calcium ions from internal stores, modulating the activity of specific calcium-dependent protein phosphatases. These phosphatases eventually affect neuronal plasticity. We discuss the role of H2O2 in these systems, stressing the importance of cellular regulation of H2O2 levels that are altered in aging individuals, in the ability to express plasticity. These studies highlight the function of H2O2 in processes of learning and memory and their change in elderly individuals, irrespective of neurodegeneration found in Alzheimer’s patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  2. Kanno S, Ishikawa M, Takayanagi M, Takayanagi Y, and Sasaki K. (1999) Exposure to hydrogen peroxide induces cell death via apoptosis in primary cultured mouse hepatocytes. Biol. Pharm. Bull. 22, 1296–1300.

    PubMed  CAS  Google Scholar 

  3. Burlacu A, Jinga V, Gafencu AV, and Simionescu M. (2001) Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res. 306, 409–416.

    Article  PubMed  CAS  Google Scholar 

  4. Datta K, Babbar P, Srivastava T, Sinha S, and Chattopadhyay P. (2002) p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int. J. Biochem. Cell Biol. 34, 148–157.

    Article  PubMed  CAS  Google Scholar 

  5. O’Donnell E, Vereker E, and Lynch MA. (2000) Age-related impairment in LTP is accompanied by enhanced activity of stress-activated protein kinases: analysis of underlying mechanisms. Eur. J. Neurosci. 12, 345–352.

    Article  PubMed  CAS  Google Scholar 

  6. Lopez-Torres M, Gredilla R, Sanz A, and Barja G. (2002) Influence of aging and long-term caloric restriction on oxygen radical generation and oxidative DNA damage in rat liver mitochondria. Free Radic. Biol. Med. 32, 882–889.

    Article  PubMed  CAS  Google Scholar 

  7. Beckman KB and Ames BN. (1998) The free radical theory of aging matures. Physiol. Rev. 78, 547–581.

    PubMed  CAS  Google Scholar 

  8. Kamsler A and Segal M. (2003) Hydrogen peroxide modulation of synaptic plasticity. J. Neurosci. 23, 269–276.

    PubMed  CAS  Google Scholar 

  9. Lafon-Cazal M, Pietri S, Culcasi M, and Bockaert J. (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364, 535–537.

    Article  PubMed  CAS  Google Scholar 

  10. Benzi G and Moretti A. (1995) Are reactive oxygen species involved in Alzheimer’s disease? Neurobiol. Aging. 16, 661–674.

    Article  PubMed  CAS  Google Scholar 

  11. Hyslop PA, Zhang Z, Pearson DV, and Phebus LA. (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of H2O2 in vitro. Brain Res. 671, 181–186.

    Article  PubMed  CAS  Google Scholar 

  12. Lei B, Adachi N, and Arai T. (1998) Measurement of the extracellular H2O2 in the brain by microdialysis. Brain Res. Brain Res. Protoc. 3, 33–36.

    Article  PubMed  CAS  Google Scholar 

  13. Jang JH and Surh YJ. (2001) Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat. Res. 496, 181–190.

    PubMed  CAS  Google Scholar 

  14. Crossthwaite AJ, Hasan S, and Williams RJ. (2002) Hydrogen peroxide-mediated phosphorylation of ERK1/2, Akt/PKB and JNK in cortical neurones: dependence on Ca(2+) and PI3-kinase. J. Neurochem. 80, 24–35.

    Article  PubMed  CAS  Google Scholar 

  15. Bhat NR and Zhang P. (1999) Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J. Neurochem. 72, 112–119.

    Article  PubMed  CAS  Google Scholar 

  16. Herson PS, Lee K, Pinnock RD, Hughes J, and Ashford ML. (1999) Hydrogen peroxide induces intracellular calcium overload by activation of a non-selective cation channel in an insulin-secreting cell line. J. Biol. Chem. 274, 833–841.

    Article  PubMed  CAS  Google Scholar 

  17. Manns JR, Hopkins RO, and Squire LR. (2003) Semantic memory and the human hippocampus. Neuron. 38, 127–133.

    Article  PubMed  CAS  Google Scholar 

  18. Morgan SL and Teyler TJ. (1999) VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J. Neurophysiol. 82, 736–740.

    PubMed  CAS  Google Scholar 

  19. Borroni AM, Fichtenholtz H, Woodside BL, and Teyler TJ. (2000) Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J. Neurosci. 20, 9272–9276.

    PubMed  CAS  Google Scholar 

  20. Bliss TV and Collingridge GL. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.

    Article  PubMed  CAS  Google Scholar 

  21. Dudek SM and Bear MF. (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367.

    Article  PubMed  CAS  Google Scholar 

  22. Soderling TR and Derkach VA. (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23, 75–80.

    Article  PubMed  CAS  Google Scholar 

  23. Bito H, Deisseroth K, and Tsien RW. (1996) CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.

    Article  PubMed  CAS  Google Scholar 

  24. Winder DG, Mansuy IM, Osman M, Moallem TM, and Kandel ER. (1998) Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92, 25–37.

    Article  PubMed  CAS  Google Scholar 

  25. Malleret G, Haditsch U, Genoux D, et al. (2001) Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686.

    PubMed  CAS  Google Scholar 

  26. Zeng H, Chattarji S, Barbarosie M, et al. (2001) Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617–629.

    Article  PubMed  CAS  Google Scholar 

  27. Wang JH and Kelly PT. (1997) Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. J. Neurosci. 17, 4600–4611.

    PubMed  CAS  Google Scholar 

  28. Onuma H, Lu YF, Tomizawa K, Moriwaki A, Tokuda M, Hatase O, and Matsui H. (1998) A calcineurin inhibitor, FK506, blocks voltagegated calcium channel-dependent LTP in the hippocampus. Neurosci. Res. 30, 313–319.

    Article  PubMed  CAS  Google Scholar 

  29. Ermak G, Morgan TE, and Davies KJ. (2001) Chronic overexpression of the calcineurin inhibitory gene DSCR1 (Adapt78) is associated with Alzheimer’s disease. J. Biol. Chem. 276, 38,787–38,794.

    Article  CAS  Google Scholar 

  30. Foster TC, Sharrow KM, Masse JR, Norris CM, and Kumar A. (2001) Calcineurin links Ca2+ dysregulation with brain aging. J. Neurosci. 21, 4066–4073.

    PubMed  CAS  Google Scholar 

  31. Li J, Huang B, Shi X, Castranova V, Vallyathan V, and Huang C. (2002) Involvement of hydrogen peroxide in asbestos-induced NFAT activation. Mol. Cell Biochem. 234, 161–168.

    Article  PubMed  Google Scholar 

  32. Huang C, Ding M, Li J, et al. (2001) Vanadium-induced nuclear factor of activated T cells activation through hydrogen peroxide. J. Biol. Chem. 276, 22,397–22,403.

    CAS  Google Scholar 

  33. Bogumil R, Namgaladze D, Schaarschmidt D, Schmachtel T, Hellstern S, Mutzel R, and Ullrich V. (2000) Inactivation of calcineurin by hydrogen peroxide and phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox regulation. Eur. J. Biochem. 267, 1407–1415.

    Article  PubMed  CAS  Google Scholar 

  34. Roveri A, Coassin M, Maiorino M, Zamburlini A, van Amsterdam FT, Ratti E, and Ursini F. (1992) Effect of hydrogen peroxide on calcium homeostasis in smooth muscle cells. Arch. Biochem. Biophys. 297, 265–270.

    Article  PubMed  CAS  Google Scholar 

  35. Volk T, Hensel M, and Kox WJ. (1997) Transient Ca2+ changes in endothelial cells induced by low doses of reactive oxygen species: role of hydrogen peroxide. Mol. Cell Biochem. 171, 11–21.

    Article  PubMed  CAS  Google Scholar 

  36. Nakazaki M, Kakei M, Yaekura K, Koriyama N, Morimitsu S, Ichinari K, Yada T, and Tei C. (2000) Diverse effects of hydrogen peroxide on cytosolic Ca2+ homeostasis in rat pancreatic beta-cells. Cell Struct. Funct. 25, 187–193.

    Article  PubMed  CAS  Google Scholar 

  37. Lee ZW, Kweon SM, Kim BC, Leem SH, Shin I, Kim JH, and Ha KS. (1998) Phosphatidic acid-induced elevation of intracellular Ca2+ is mediated by RhoA and H2O2 in Rat-2 fibroblasts. J. Biol. Chem. 273, 12,710–12,715.

    CAS  Google Scholar 

  38. Yermolaieva O, Brot N, Weissbach H, and Heinemann SH, and Hoshi T. (2000) Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling. Proc. Natl. Acad. Sci. USA 97, 448–453.

    Article  PubMed  CAS  Google Scholar 

  39. Yang ZW, Zheng T, Wang J, Zhang A, Altura BT, and Altura BM. (1999) Hydrogen peroxide induces contraction and raises [Ca2+]i in canine cerebral arterial smooth muscle: participation of cellular signaling pathways. Naunyn Schmiedebergs Arch. Pharmacol. 360, 646–653.

    Article  PubMed  CAS  Google Scholar 

  40. Nam SH, Jung SY, Yoo CM, Ahn EH, and Suh CK. (2002) H2O2 enhances Ca2+ release from osteoblast internal stores. Yonsei Med. J. 43, 229–235.

    PubMed  CAS  Google Scholar 

  41. Gen W, Tani M, Takeshita J, Ebihara Y, and Tamaki K. (2001) Mechanisms of Ca2+ overload induced by extracellular H2O2 in quiescent isolated rat cardiomyocytes. Basic Res. Cardiol. 96, 623–629.

    Article  PubMed  CAS  Google Scholar 

  42. Norris CM, Halpain S, and Foster TC. (1998) Alterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging. J. Neurophysiol. 80, 1567–1570.

    PubMed  CAS  Google Scholar 

  43. Vereker E, O’Donnell E, Lynch A, Kelly A, Nolan Y, and Lynch MA. (2001) Evidence that interleukin-1beta and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. Eur. J. Neurosci. 14, 1809–1819.

    Article  PubMed  CAS  Google Scholar 

  44. McGahon BM, Martin DS, Horrobin DF, and Lynch MA. (1999) Age-related changes in synaptic function: analysis of the effect of dietary supplementation with omega-3 fatty acids. Neuroscience 94, 305–314.

    Article  PubMed  CAS  Google Scholar 

  45. Liu J, Head E, Gharib AM, Yuan W, Ingersoll RT, Hagen TM, Cotman CW, and Ames BN. (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc. Natl. Acad. Sci. USA 99, 2356–2361.

    Article  PubMed  CAS  Google Scholar 

  46. Pellmar TC, Hollinden GE, and Sarvey JM. (1991) Free radicals accelerate the decay of long-term potentiation in field CA1 of guineapig hippocampus. Neuroscience 44, 353–359.

    Article  PubMed  CAS  Google Scholar 

  47. Avshalumov MV, Chen BT, and Rice ME. (2000) Mechanisms underlying H(2)O(2)-mediated inhibition of synaptic transmission in rat hippocampal slices. Brain Res. 882, 86–94.

    Article  PubMed  CAS  Google Scholar 

  48. Avshalumov MV and Rice ME. (2002) NMDA receptor activation mediates hydrogen peroxide induced pathophysiology in rat hippocampal slices. J. Neurophysiol. 87, 2896–2903.

    PubMed  CAS  Google Scholar 

  49. Auerbach JM and Segal M. (1997) Peroxide modulation of slow onset potentiation in rat hippocampus. J. Neurosci. 17, 8695–8701.

    PubMed  CAS  Google Scholar 

  50. Epstein CJ, Avraham KB, Lovett M, Smith S, Elroy-Stein O, Rotman G, Bry C, and Groner Y. (1987) Transgenic mice with increased Cu/Zn-superoxide dismutase activity: animal model of dosage effects in Down syndrome. Proc. Natl. Acad. Sci. USA 84, 8044–8048.

    Article  PubMed  CAS  Google Scholar 

  51. Yarom R, Sapoznikov D, Havivi Y, Avraham KB, Schickler M, and Groner Y. (1988) Premature aging changes in neuromuscular junctions of transgenic mice with an extra human CuZn-SOD gene: a model for tongue pathology in Down’s syndrome. J. Neurol. Sci. 88, 41–53.

    Article  PubMed  CAS  Google Scholar 

  52. Peled-Kamar M, Lotem J, Okon E, Sachs L, and Groner Y. (1995) Thymic abnormalities and enhanced apoptosis of thymocytes and bone marrow cells in transgenic mice overexpressing Cu/Zn-superoxide dismutase: implications for Down syndrome. EMBO J. 14, 4985–4993.

    PubMed  CAS  Google Scholar 

  53. Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, and Chan PH. (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc. Natl. Acad. Sci. USA 88, 11,158–11,162.

    Article  CAS  Google Scholar 

  54. Saito A, Hayashi T, Okuno S, Ferrand-Drake M, and Chan PH. (2003) Overexpression of copper/zinc superoxide dismutase in transgenic mice protects against neuronal cell death after transient focal ischemia by blocking activation of the Bad cell death signaling pathway. J. Neurosci. 23, 1710–1718.

    PubMed  CAS  Google Scholar 

  55. Sugawara T, Noshita N, Lewen A, et al. (2002) Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22, 209–217.

    PubMed  CAS  Google Scholar 

  56. Levkovitz Y, Avignone E, Groner Y, and Segal M. (1999) Upregulation of GABA neurotransmission suppresses hippocampal excitability and prevents long-term potentiation in transgenic superoxide dismutase-overexpressing mice. Neurosci. 19, 10,977–10,984.

    CAS  Google Scholar 

  57. Gahtan E, Auerbach JM, Groner Y, and Segal M. (1998) Reversible impairment of long-term potentiation in transgenic Cu/Zn-SOD mice. Eur. J. Neurosci. 10, 538–544.

    Article  PubMed  CAS  Google Scholar 

  58. Kamsler A, Segal M. (2003) Paradoxical actions of hydrogen peroxide on LTP in transgenic SOD-1 mice. J. Neurosci. 23, 10359–10367.

    PubMed  CAS  Google Scholar 

  59. Beckman JS, Estevez AG, Crow JP, and Barbeito L. (2001) Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 24, S15–20.

    Article  PubMed  CAS  Google Scholar 

  60. Klann E. (1998) Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J. Neurophysiol. 80, 452–457.

    PubMed  CAS  Google Scholar 

  61. Klann E, Roberson ED, Knapp LT, and Sweatt JD. (1998) A role for superoxide in protein kinase C activation and induction of long-term potentiation. J. Biol. Chem. 273, 4516–4522.

    Article  PubMed  CAS  Google Scholar 

  62. Thiels E, Urban NN, Gonzalez-Burgos GR, et al. (2000) Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci. 20, 7631–7639.

    PubMed  CAS  Google Scholar 

  63. Klann E and Thiels E. (1999) Modulation of protein kinases and protein phosphatases by reactive oxygen species: implications for hippocampal synaptic plasticity. Prog. Neuropsychopharmacol. Biol. Psychiatry 23, 359–376.

    Article  PubMed  CAS  Google Scholar 

  64. Knapp LT and Klann E. (2002) Potentiation of hippocampal synaptic transmission by superoxide requires the oxidative activation of protein kinase C. J. Neurosci. 22, 674–683.

    PubMed  CAS  Google Scholar 

  65. Norris CM, Halpain S, and Foster TC. (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J. Neurosci. 18, 3171–3179.

    PubMed  CAS  Google Scholar 

  66. Campbell LW, Hao SY, Thibault O, Blalock EM, and Landfield PW. (1996) Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J. Neurosci. 16, 6286–6295.

    PubMed  CAS  Google Scholar 

  67. Mermelstein PG, Bito H, Deisseroth K, and Tsien RW. (2000) Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J. Neurosci. 20, 266–273.

    PubMed  CAS  Google Scholar 

  68. Norris CM, Blalock EM, Chen KC, Porter NM, and Landfield PW. (2002) Calcineurin enhances L-type Ca(2+) channel activity in hippocampal neurons: increased effect with age in culture. Neuroscience 110, 213–225.

    Article  PubMed  CAS  Google Scholar 

  69. Hell JW, Yokoyama CT, Breeze LJ, Chavkin C, and Catterall WA. (1995) Phosphorylation of presynaptic and postsynaptic calcium channels by cAMP-dependent protein kinase in hippocampal neurons. EMBO J. 14, 3036–3044.

    PubMed  CAS  Google Scholar 

  70. Davare MA, Dong F, Rubin CS, and Hell JW. (1999) The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J. Biol. Chem. 274, 30,280–30,287.

    Article  CAS  Google Scholar 

  71. Thibault O, Hadley R, and Landfield PW. (2001) Elevated postsynaptic [Ca2+]i and L-type calcium channel activity in aged hippocampal neurons: relationship to impaired synaptic plasticity. J. Neurosci. 21, 9744–9756.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Kamsler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamsler, A., Segal, M. Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity. Mol Neurobiol 29, 167–178 (2004). https://doi.org/10.1385/MN:29:2:167

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:2:167

Index Entries

Navigation