Skip to main content
Log in

Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The induction of synthesis or release of endogenous neurotrophic factors in the brain by low-molecular-weight drugs could be a feasible alternative for the direct administration of neurotrophic factors for the treatment of central nervous system disorders. Recent data suggest that several drugs already in clinical use increase the synthesis, release, or signaling of neurotrophins. Antidepressant drugs increase the synthesis and signaling of brain-derived neurotrophic factor (BDNF), and BDNF signaling appears to be both sufficient and necessary for the antidepressant-induced behavioral effects. Furthermore, neurotrophins and other neurotrophic factors play a role in the acute and chronic responses produced by addictive drugs. Moreover, several neuroprotective drugs influence neurotrophin synthesis or signaling, although the significance of these effects is still unclear. These findings reveal a wider role for neurotrophic factors in drug action than has previously been expected, and they suggest that neurotrophin-induced trophic responses in neuronal connectivity and plasticity may be involved in the mechanism of action of several classes of CNS drugs. Improved assay systems are needed for the systematic screening of the effects of putative neuroprotective drugs on the synthesis, release, and signaling of neurotrophic factors, and for the evaluation of the functional role of these factors in the action of novel drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hefti F. (1997) Pharmacology of neurotrophic factors. Annu. Rev. Pharmacol. Toxicol. 37, 239–267.

    Article  PubMed  CAS  Google Scholar 

  2. Huang E.J. and Reichardt L.F. (2001) Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736.

    Article  PubMed  CAS  Google Scholar 

  3. Sofroniew M., Howe C., and Mobley W. (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217–1281.

    Article  PubMed  CAS  Google Scholar 

  4. Thoenen H. and Sendtner M. (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5 Suppl, 1046–1050.

    Article  PubMed  CAS  Google Scholar 

  5. Chao M. (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.

    Article  PubMed  CAS  Google Scholar 

  6. McAllister A.K., Katz L.C., and Lo D.C. (1999) Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318.

    Article  PubMed  CAS  Google Scholar 

  7. Poo M.M. (2001) Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32.

    Article  PubMed  CAS  Google Scholar 

  8. Knusel B., Beck K.D., Winslow J.W., Rosenthal A., Burton L.E., Widmer H.R., Nikolics K., and Hefti F. (1992) Brain-derived neurotrophic factor administration protects basal forebrain cholinergic but not nigral dopaminergic neurons from degenerative changes after axotomy in the adult rat brain. J. Neurosci. 12, 4391–4402.

    PubMed  CAS  Google Scholar 

  9. Morse J.K., Wiegand S.J., Anderson K., You Y., Cai N., Carnahan J., et al. (1993) Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J. Neurosci. 13, 4146–4156.

    PubMed  CAS  Google Scholar 

  10. Mamounas L.A., Blue M.E., Siuciak J.A., and Altar C.A. (1995) Brain-derived neurotrophic factor promotes the survival and sprouting of serotonergic axons in rat brain. J. Neurosci. 15, 7929–7939.

    PubMed  CAS  Google Scholar 

  11. Egan M.F., Kojima M., Callicott J.H., Goldberg T.E., Kolachana B.S., Bertolino A., et al. (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257–269.

    Article  PubMed  CAS  Google Scholar 

  12. Kunugi H., Ueki A., Otsuka M., Isse K., Hirasawa H., Kato N., et al. (2001) A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol. Psychiatry 6, 83–86.

    Article  PubMed  CAS  Google Scholar 

  13. Riemenschneider M., Schwarz S., Wagenpfeil S., Diehl J., Muller U., Forstl H., et al. (2002) A polymorphism of the brain-derived neurotrophic factor (BDNF) is associated with Alzheimer’s disease in patients lacking the apolipoprotein E epsilon4 allele. Mol. Psychiatry 7, 782–785.

    Article  PubMed  CAS  Google Scholar 

  14. Ventriglia M., Bocchio Chiavetto L., Benussi L., Binetti G., Zanetti O., Riva M.A., et al. (2002) Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Mol. Psychiatry 7, 136–137.

    Article  PubMed  CAS  Google Scholar 

  15. Neves-Pereira M., Mundo E., Muglia P., King N., Macciardi F., and Kennedy J.L. (2002) The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am. J. Hum. Genet. 71, 651–655.

    Article  PubMed  CAS  Google Scholar 

  16. Sklar P., Gabriel S.B., McInnis M.G., Bennett P., Lim Y.M., Tsan G., et al. (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol. Psychiatry 7, 579–593.

    Article  PubMed  CAS  Google Scholar 

  17. Poduslo J.F. and Curran G.L. (1996) Permeability at the blood-brain and blood-nerve barriers of the neurotrophic factors: NGF, CNTF, NT-3, BDNF. Brain Res. Mol. Brain Res. 36, 280–286.

    Article  PubMed  CAS  Google Scholar 

  18. Saragovi H.U. and Gehring K. (2000) Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol. Sci. 21, 93–98.

    Article  PubMed  CAS  Google Scholar 

  19. Granholm A., Albeck D., Backman C., Curtis M., Ebendal T., Friden P., et al. (1998) A noninvasive system for delivering neural growth factors across the blood-brain barrier: a review. Rev. Neurosci. 9, 31–55.

    PubMed  CAS  Google Scholar 

  20. Wu D. and Pardridge W.M. (1999) Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc. Natl. Acad. Sci. USA 96, 254–259.

    Article  PubMed  CAS  Google Scholar 

  21. Kramer R., Zhang Y., Gehrmann J., Gold R., Thoenen H., and Wekerle H. (1995) Gene transfer through the blood-nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat. Med. 1, 1162–1166.

    Article  PubMed  CAS  Google Scholar 

  22. Backman C., Rose G., Hoffer B., Henry M., Bartus R., Friden P., et al. (1996) Systemic administration of a nerve growth factor conjugate reverses age-related cognitive dysfunction and prevents cholinergic neuron atrophy. J. Neurosci. 16, 5437–5442.

    PubMed  CAS  Google Scholar 

  23. Thoenen H., Castrén E., Berzaghi M., Blöchl A., and Lindholm D. (1994) Neurotrophic factors: possibilities and limitations in the treatment of neurodegenerative disorders. In: Recent advances in the treatment of neurodegenerative disorders and cognitive dysfunctions (Racagai, G., Brunello, N., Langer, S.Z., eds.) Int. Acad. Biochem. Drug Res. vol. 7, Krager, Basel, Switzerland, pp. 197–203.

    Google Scholar 

  24. Zafra F., Hengerer B., Leibrock J., Thoenen H., and Lindholm D. (1990) Activity-dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 9, 3545–3550.

    PubMed  CAS  Google Scholar 

  25. Ballarín M., Ernfors P., Lindefors N., and Persson H. (1991) Hippocampal damage and kainic acid injection induce a rapid increase in mRNA for BDNF and NGF in rat brain. Exp. Neurol. 114, 35–43.

    Article  PubMed  Google Scholar 

  26. Dugich-Djordjevic M.M., Tocco G., Willoughby D.A., Najm I., Pasinetti G.M., Thompson R.F., et al. (1992) BDNF mRNA expression in the developing rat brain following kainic acid induced seizure activity. Neuron 8, 1127–1138.

    Article  PubMed  CAS  Google Scholar 

  27. Berzaghi M.P., Cooper J.D., Castrén E., Zafra F., Sofroniew M.V., Thoenen H., et al. (1993) Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J. Neurosci. 13, 3818–3826.

    CAS  Google Scholar 

  28. Duman R.S., Heninger G.R., and Nestler E.J. (1997) A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54, 597–606.

    PubMed  CAS  Google Scholar 

  29. Altar C.A. (1999) Neurotrophins and depression. Trends Pharmacol. Sci. 20, 59–61.

    Article  PubMed  CAS  Google Scholar 

  30. Skolnick P. (1999) Antidepressants for the new millennium. Eur. J. Pharmacol. 375, 31–40.

    Article  PubMed  CAS  Google Scholar 

  31. Manji H.K., Drevets W.C., and Charney D.S. (2001) The cellular neurobiology of depression. Nat. Med. 7, 541–547.

    Article  PubMed  CAS  Google Scholar 

  32. Reid I.C. and Stewart C.A. (2001) How antidepressants work: New perspectives on the pathophysiology of depressive disorder. Br. J. Psychiatry 178, 299–303.

    Article  PubMed  CAS  Google Scholar 

  33. Nestler E.J., Barrot M., DiLeone R.J., Eisch A.J., Gold S.J., and Monteggia L.M. (2002) Neurobiology of depression. Neuron 34, 13–25.

    Article  PubMed  CAS  Google Scholar 

  34. Nobler M.S., Sackeim H.A., Prohovnik I., Moeller J.R., Mukherjee S., Schnur D.B., et al. (1994) Regional cerebral blood flow in mood disorders, III. Treatment and clinical response. Arch. Gen. Psychiatry 51, 884–897.

    PubMed  CAS  Google Scholar 

  35. Duman R.S. and Charney D.S. (1999) Cell atrophy and loss in major depression. Biol. Psychiatry 45, 1083–1084.

    Article  PubMed  CAS  Google Scholar 

  36. Rajkowska G., Miguel-Hidalgo J.J., Wei J., Dilley G., Pittman S.D., Meltzer H.Y., et al. (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol. Psychiatry 45, 1085–1098.

    Article  PubMed  CAS  Google Scholar 

  37. Castrén E. (2004) Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol., 4, 58–64.

    Article  PubMed  CAS  Google Scholar 

  38. Isackson P.J., Huntsman M.M., Murray K.D., and Gall C.M. (1991) BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: temporal pattern of induction distinct from NGF. Neuron 6, 937–948.

    Article  PubMed  CAS  Google Scholar 

  39. Rocamora N., Palacios J.M., and Mengod G. (1992) Limbic seizures induce a differential regulation of the expression of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3, in the rat hippocampus. Brain Res. Mol. Brain Res. 13, 27–33.

    Article  PubMed  CAS  Google Scholar 

  40. Nibuya M., Morinobu S., and Duman R.S. (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.

    PubMed  CAS  Google Scholar 

  41. Zetterström T.S., Pei Q., and Grahame-Smith D.G. (1998) Repeated electroconvulsive shock extends the duration of enhanced gene expression for BDNF in rat brain compared with a single administration. Brain Res. Mol. Brain Res. 57, 106–110.

    Article  PubMed  Google Scholar 

  42. Aloyz R., Fawcett J.P., Kaplan D.R., Murphy R.A., and Miller F.D. (1999) Activity-dependent activation of TrkB neurotrophin receptors in the adult CNS. Learn. Mem. 6, 216–231.

    PubMed  CAS  Google Scholar 

  43. Binder D.K., Routbort M.J., and McNamara J.O. (1999) Immunohistochemical evidence of seizure-induced activation of trk receptors in the mossy fiber pathway of adult rat hippocampus. J. Neurosci. 19, 4616–4626.

    PubMed  CAS  Google Scholar 

  44. Russo-Neustadt A., Beard R.C., and Cotman C.W. (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.

    Article  PubMed  CAS  Google Scholar 

  45. Coppell A.L., Pei Q., and Zetterstrom T.S.C. (2003) Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology 44, 903–910.

    Article  PubMed  CAS  Google Scholar 

  46. Chen B., Dowlatshahi D., MacQueen G.M., Wang J.F., and Young L.T. (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol. Psychiatry 50, 260–265.

    Article  PubMed  CAS  Google Scholar 

  47. Saarelainen T., Hendolin P., Lucas G., Koponen E., Sairanen M., MacDonald E., et al. (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J. Neurosci. 23, 349–357.

    PubMed  CAS  Google Scholar 

  48. Hashimoto R., Takei N., Shimazu K., Christ L., Lu B., and Chuang de M. (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: An essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43, 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  49. Siuciak J.A., Lewis D.R., Wiegand S.J., and Lindsay R.M. (1997) Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol. Biochem. Behav. 56, 131–137.

    Article  PubMed  CAS  Google Scholar 

  50. Shirayama Y., Chen A.C., Nakagawa S., Russell D.S., and Duman R.S. (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J. Neurosci. 22, 3251–3261.

    PubMed  CAS  Google Scholar 

  51. Eisch A.J., Bolaños C.A., de Wit J., Simonak R.D., Pudiak C.M., Barrot M., et al. (2003) Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol. Psychiatry 54, 994–1005.

    Article  PubMed  CAS  Google Scholar 

  52. Thompson S.W., Bennett D.L., Kerr B.J., Bradbury E.J., and McMahon S.B. (1999) Brainderived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc. Natl. Acad. Sci. USA 96, 7714–7718.

    Article  PubMed  CAS  Google Scholar 

  53. Smith M.A., Makino S., Kvetnansky R., and Post R.M. (1995) Effects of stress on neurotrophic factor expression in the rat brain. Ann. NY Acad. Sci. 771, 234–239.

    Article  PubMed  CAS  Google Scholar 

  54. Rios M., Fan G., Fekete C., Kelly J., Bates B., Kuehn R., et al. (2001) Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15, 1748–1757.

    Article  PubMed  CAS  Google Scholar 

  55. Lyons W.E., Mamounas L.A., Ricaurte G.A., Coppola V., Reid, S.W., Bora S.H., et al. (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc. Natl. Acad. Sci. USA 96, 15,239–15,244.

    Article  CAS  Google Scholar 

  56. Koponen E., Voikar V., Riekki R., Saarelainen T., Rauvala H., Taira T., et al. (2003) Improved memory and increased trkB and PLC-gamma phosphorylation, but reduced LTP in transgenic mice overexpressing trkB receptor in neurons. Soc. Neurosci. Abstr. 145.4

  57. Sen S., Nesse R.M., Stoltenberg S.F., Li S., Gleiberman L., Chakravarti A., et al. (2003) A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology 28, 397–401.

    Article  PubMed  CAS  Google Scholar 

  58. Nestler E.J., Alreja M., and Aghajanian G.K. (1999) Molecular control of locus coeruleus neurotransmission. Biol. Psychiatry 46, 1131–1139.

    Article  PubMed  CAS  Google Scholar 

  59. Williams J.T., Christie M.J., and Manzoni O. (2001) Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81, 299–343.

    PubMed  CAS  Google Scholar 

  60. Nestler E.J. (2002) Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647.

    Article  PubMed  CAS  Google Scholar 

  61. Ungless M.A., Whistler J.L., Malenka R.C., and Bonci A. (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583–587.

    Article  PubMed  CAS  Google Scholar 

  62. Saal D., Dong Y., Bonci A., and Malenka R.C. (2003) Drugs of abuse and stress trigger a common synptic adaptation in dopamine neurons. Neuron 37, 577–582.

    Article  PubMed  CAS  Google Scholar 

  63. Sklair-Tavron L., Shi W.X., Lane S.B., Harris H.W., Bunney B.S., and Nestler E.J. (1996) Chronic morphine induces visible changes in the morphology of mesolimbic dopamine neurons. Proc. Natl. Acad. Sci. USA 93, 11,202–11,207.

    Article  CAS  Google Scholar 

  64. Nestler E.J. and Aghajanian G.K. (1997) Molecular and cellular basis of addiction. Science 278, 58–63.

    Article  PubMed  CAS  Google Scholar 

  65. Nestler E.J. (2001) Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2, 119–128.

    Article  PubMed  CAS  Google Scholar 

  66. Nestler E.J. (2002) From neurobiology to treatment: progress against addiction. Nat. Neurosci. 5 Suppl, 1076–1079.

    Article  PubMed  CAS  Google Scholar 

  67. Hyman C., Hofer M., Barde Y.A., Juhasz M., Yancopoulos G.D., Squinto S.P., et al. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350, 230–232.

    Article  PubMed  CAS  Google Scholar 

  68. Altar C.A., Boylan C.B., Fritsche M., Jones B.E., Jackson C., Wiegand S.J., et al. (1994) Efficacy of brain-derived neurotrophic factor and neurotrophin-3 on neurochemical and behavioral deficits associated with partial nigrostriatal dopamine lesions. J. Neurochem. 63, 1021–1032.

    Article  PubMed  CAS  Google Scholar 

  69. Hyman C., Juhasz M., Jackson C., Wright P., Ip N.Y., and Lindsay R.M. (1994) Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347.

    PubMed  CAS  Google Scholar 

  70. Martin-Iverson M.T., Todd K.G., and Altar C.A. (1994) Brain-derived neurotrophic factor and neurotrophin-3 activate striatal dopamine and serotonin metabolism and related behaviors: interactions with amphetamine. J. Neurosci. 14, 1262–1270.

    PubMed  CAS  Google Scholar 

  71. Kontkanen O. and Castrén E. (1999) Trophic effects of selegiline on cultured dopaminergic neurons. Brain Res. 829, 190–192.

    Article  PubMed  CAS  Google Scholar 

  72. Numan S., Lane-Ladd S.B., Zhang L., Lundgren K.H., Russell D.S., Seroogy K.B., et al. (1998) Differential regulation of neurotrophin and trk receptor mRNAs in catecholaminergic nuclei during chronic opiate treatment and withdrawal. J. Neurosci. 18, 10,700–10,708.

    CAS  Google Scholar 

  73. Berhow M.T., Russell D.S., Terwilliger R.Z., Beitner-Johnson D., Self D.W., Lindsay R.M., et al. (1995) Influence of neurotrophic factors on morphine- and cocaine-induced biochemical changes in the mesolimbic dopamine system. Neuroscience 68, 969–979.

    Article  PubMed  CAS  Google Scholar 

  74. Horger B.A., Iyasere C.A., Berhow M.T., Messer C.J., Nestler E.J., and Taylor J.R. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J. Neurosci. 19, 4110–4122.

    PubMed  CAS  Google Scholar 

  75. Akbarian S., Rios M., Liu R.J., Gold S.J., Fong H.F., Zeiler S., et al. (2002) Brain-derived neurotrophic factor is essential for opiate-induced plasticity of noradrenergic neurons. J. Neurosci. 22, 4153–4162.

    PubMed  CAS  Google Scholar 

  76. Messer C.J., Eisch A.J., Carlezon W.A., Jr., Whisler K., Shen L., Wolf D.H., et al. (2000) Role for GDNF in biochemical and behavioral adaptations to drugs of abuse. Neuron 26, 247–257.

    Article  PubMed  CAS  Google Scholar 

  77. Lucas G., Hendolin P., Harkany T., Agerman K., Paratcha G., Holmgren C., et al. (2003) Neurotrophin-4 mediated TrkB activation reinforces morphine-induced analgesia. Nat. Neurosci. 6, 221–222.

    Article  PubMed  CAS  Google Scholar 

  78. Smith D.J., Leil T.A., and Liu X. (2003) Neurotrophin-4 is required for tolerance to morphine in the mouse. Neurosci. Lett. 340, 103–106.

    Article  PubMed  CAS  Google Scholar 

  79. Doble A. (1996) The pharmacology and mechanism of action of riluzole. Neurology 47, S233–241.

    PubMed  CAS  Google Scholar 

  80. Mizuta I., Ohta M., Ohta K., Nishimura M., Mizuta E., and Kuno S. (2001) Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neurosci. Lett. 310, 117–120.

    Article  PubMed  CAS  Google Scholar 

  81. Katoh-Semba R., Asano T., Ueda H., Morishita R., Takeuchi I., Inaguma Y., et al. (2002) Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J. 16, 1328–1330.

    PubMed  CAS  Google Scholar 

  82. Parsons C.G., Danysz W., and Quack G. (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38, 735–767.

    Article  PubMed  CAS  Google Scholar 

  83. Marvanova M., Lakso M., Pirhonen J., Nawa H., Wong G., and Castrén E. (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol. Cell Neurosci. 18, 247–258.

    Article  PubMed  CAS  Google Scholar 

  84. Lauterborn J.C., Lynch G., Vanderklish P., Arai A., and Gall C.M. (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J. Neurosci. 20, 8–21.

    PubMed  CAS  Google Scholar 

  85. Legutko B., Li X., and Skolnick P. (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40, 1019–1027.

    Article  PubMed  CAS  Google Scholar 

  86. Mackowiak M., O’Neill M.J., Hicks C.A., Bleakman D., and Skolnick P. (2002) An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. Neuropharmacology 43, 1–10.

    Article  PubMed  CAS  Google Scholar 

  87. Murray T.K., Whalley K., Robinson C.S., Ward M.A., Hicks C.A., Lodge D., et al. (2003) LY503430, a novel AMPA receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2, 2.

    Google Scholar 

  88. Guillin O., Diaz J., Carroll P., Griffon N., Schwartz J.C., and Sokoloff P. (2001) BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization. Nature 411, 86–89.

    Article  PubMed  CAS  Google Scholar 

  89. Inoue S., Susukida M., Ikeda K., Murase K., and Hayashi K. (1997) Dopaminergic transmitter up-regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) synthesis in mouse astrocytes in culture. Biochem. Biophys. Res. Comm. 238, 468–472.

    Article  PubMed  CAS  Google Scholar 

  90. Ohta M., Mizuta I., Ohta K., Nishimura M., Mizuta E., Hayashi K., et al. (2000) Apomorphine up-regulates NGF and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Comm. 272, 18–22.

    Article  PubMed  CAS  Google Scholar 

  91. Heinonen E.H. and Lammintausta R. (1991) A review of the pharmacology of selegiline. Acta Neurol. Scand. Suppl. 136, 44–59.

    Article  PubMed  CAS  Google Scholar 

  92. Tatton W.G., Ansari K., Ju W., Salo P.T., and Yu P.H. (1995) Selegiline induces “trophic-like” rescue of dying neurons without MAO inhibition. Adv. Exp. Med. Biol. 363, 15–16.

    PubMed  CAS  Google Scholar 

  93. Mizuta I., Ohta M., Ohta K., Nishimura M., Mizuta E., Hayashi K., et al. (2000) Selegiline and desmethylselegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem. Biophys. Res. Comm. 279, 751–755.

    Article  PubMed  CAS  Google Scholar 

  94. Castrén E., Thoenen H., and Lindholm D. (1995) Brain-derived neurotrophic factor messenger RNA is expressed in the septum, hypothalamus and in adrenergic brain stem nuclei of adult rat brain and is increased by osmotic stimulation in the paraventricular nucleus. Neuroscience 64, 71–80.

    Article  PubMed  Google Scholar 

  95. Altar C.A., Cai N., Bliven T., Juhasz M., Conner J.M., Acheson A.L., et al. (1997) Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860.

    Article  PubMed  CAS  Google Scholar 

  96. Nitta A., Ito M., Fukumitsu H., Ohmiya M., Ito H., Sometani A., et al. (1999) 4-Methylcatechol increases brain-derived neurotrophic factor content and mRNA expression in cultured brain cells and in rat brain in vivo. J. Pharmacol. Exp. Ther. 291, 1276–1283.

    PubMed  CAS  Google Scholar 

  97. Lee S.J. and McEwen B.S. (2001) Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Ann. Rev. Pharmacol. Toxicol. 41, 569–591.

    Article  CAS  Google Scholar 

  98. Behl C. (2002) Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 3, 433–442.

    PubMed  CAS  Google Scholar 

  99. Solum D.T. and Handa R.J. (2002) Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus. J. Neurosci. 22, 2650–2659.

    PubMed  CAS  Google Scholar 

  100. Sohrabji F., Miranda R.C., and Toran-Allerand C.D. (1995) Identification of a putative estrogen response element in the gene encoding brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. USA 92, 11,110–11,114.

    Article  CAS  Google Scholar 

  101. Miranda R.C., Sohrabji F., and Toran-Allerand D. (1994) Interactions of estrogen with the neurotrophins and their receptors during neural development. Horm. Behav. 28, 367–375.

    Article  PubMed  CAS  Google Scholar 

  102. Toran-Allerand C.D. (1996) Mechanisms of estrogen action during neural development: mediation by interactions with the neurotrophins and their receptors? J. Steroid Biochem. Mol. Biol. 56, 169–178.

    Article  PubMed  CAS  Google Scholar 

  103. Steiner J.P., Connolly M.A., Valentine H.L., Hamilton G.S., Dawson T.M., Hester L., et al. (1997) Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat. Med. 3, 421–428.

    Article  PubMed  CAS  Google Scholar 

  104. Klettner A. and Herdegen T. (2003) FK506 and its analogs—therapeutic potential for neurological disorders. Curr. Drug Target CNS Neurol. Disord. 2, 153–162.

    Article  CAS  Google Scholar 

  105. Tanaka K., Fujita N., and Ogawa N. (2003) Immunosuppressive (FK506) and nonimmunosuppressive (GPI1046) immunophilin ligands activate neurotrophic factors in the mouse brain. Brain Res. 970, 250–253.

    Article  PubMed  CAS  Google Scholar 

  106. Russo-Neustadt A., Ha T., Ramirez R., and Kesslak J.P. (2001) Physical activity-antidepressant treatment combination: impact on brain- derived neurotrophic factor and behavior in an animal model. Behav. Brain Res. 120, 87–95.

    Article  PubMed  CAS  Google Scholar 

  107. Conti A.C., Cryan J.F., Dalvi A., Lucki I., and Blendy J.A. (2002) cAMP response element-binding protein is essential for the upregulation of brain-derived neurotrophic factor transcription, but not the behavioral or endocrine responses to antidepressant drugs. J. Neurosci. 22, 3262–3268.

    PubMed  CAS  Google Scholar 

  108. Van Hoomissen J.D., Chambliss H.O., Holmes P.V., and Dishman R.K. (2003) Effects of chronic exercise and imipramine on mRNA for BDNF after olfactory bulbectomy in rat. Brain Res. 974, 228–235.

    Article  PubMed  CAS  Google Scholar 

  109. Chen A.C., Shin K.H., Duman R.S., and Sanacora G. (2001) ECS-Induced mossy fiber sprouting and BDNF expression are attenuated by ketamine pretreatment. J. Ect. 17, 27–32.

    Article  PubMed  CAS  Google Scholar 

  110. Smith M.A., Makino S., Kvetnansky R., and Post R.M. (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777.

    PubMed  CAS  Google Scholar 

  111. Vaidya V.A., Terwilliger R.M., and Duman R.S. (1999) Role of 5-HT2A receptors in the stress-induced down-regulation of brain- derived neurotrophic factor expression in rat hippocampus. Neurosci. Lett. 262, 1–4.

    Article  PubMed  CAS  Google Scholar 

  112. Nibuya M., Takahashi M., Russell D.S., and Duman R.S. (1999) Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci. Lett. 267, 81–84.

    Article  PubMed  CAS  Google Scholar 

  113. Nibuya M., Nestler E.J., and Duman R.S. (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J. Neurosci. 16, 2365–2372.

    PubMed  CAS  Google Scholar 

  114. Thome J., Sakai N., Shin K., Steffen C., Zhang Y.J., Impey S., et al. (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J. Neurosci. 20, 4030–4036.

    PubMed  CAS  Google Scholar 

  115. Jeon S.H., Seong Y.S., Juhnn Y.S., Kang U.G., Ha K.S., Kim Y.S., et al. (1997) Electroconvulsive shock increases the phosphorylation of cyclic AMP response element binding protein at Ser-133 in rat hippocampus but not in cerebellum. Neuropharmacology 36, 411–414.

    Article  PubMed  CAS  Google Scholar 

  116. Le Foll B., Frances H., Diaz J., Schwartz J.C., and Sokoloff P. (2002) Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur. J. Neurosci. 15, 2016–2026.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Castrén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castrén, E. Neurotrophins as mediators of drug effects on mood, addiction, and neuroprotection. Mol Neurobiol 29, 289–301 (2004). https://doi.org/10.1385/MN:29:3:289

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:3:289

Index Entries

Navigation