Skip to main content
Log in

Strengths and limitations of the neurosphere culture system

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

After the initial reports of free-floating cultures of neural stem cells termed neurospheres (1,2), a wide array of studies using this promising culture system emerged. In theory, this was a nearperfect system for large-scale production of neural cells for use in cell replacement therapies and to assay for and characterize neural stem cells. More than a decade later, after rigorous scrutiny and ample experimental testing of the neurosphere culture system, it has become apparent that the culture system suffers from several disadvantages, and its usefulness is limited for several applications. Nevertheless, the bulk of high-quality research produced over the last decade has also shown that under the right circumstances and for the appropriate purposes, neurospheres hold up to their initial promise.

This article discusses the pros and cons of the neurosphere culture system regarding its three major applications: as an assay for neural stem cells, as a model system for neurogenesis and neural development, and for expansion of neural stem cells for transplantation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci., 12, 4565–4574.

    PubMed  CAS  Google Scholar 

  2. Reynolds, B. A. and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.

    Article  PubMed  CAS  Google Scholar 

  3. Tropepe, V., Hitoshi, S., Sirard, C., Mak, T. W., Rossant, J., and van der Kooy, D. (2001) Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78.

    Article  PubMed  CAS  Google Scholar 

  4. Gritti, A., Parati, E. A., Cova, L., et al. (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.

    PubMed  CAS  Google Scholar 

  5. Morshead, C. M., Reynolds, B. A., Craig, C. G., et al. (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082.

    Article  PubMed  CAS  Google Scholar 

  6. Tropepe, V., Sibilia, M., Ciruna, B. G., Rossant, J., Wagner, E. F., and van der Kooy, D. (1999) Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse Dev. Biol. 208, 166–188.

    Article  PubMed  CAS  Google Scholar 

  7. Vescovi, A. L., Reynolds, B. A., Fraser, D. D., and Weiss, S. (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966.

    Article  PubMed  CAS  Google Scholar 

  8. Hack, M. A., Sugimori, M., Lundberg, C., Nakafuku, M., and Gotz, M. (2004) Regionalization and fate specification in neurospheres: the role of Olig2 and Pax6. Mol. Cell Neurosci. 25, 664–678.

    Article  PubMed  CAS  Google Scholar 

  9. Arsenijevic, Y., Weiss, S., Schneider, B., and Aebischer, P. (2001) Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J. Neurosci. 21, 7194–7202.

    PubMed  CAS  Google Scholar 

  10. Caldwell, M. A., He, X., Wilkie, N., et al. (2001) Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol. 19, 475–479.

    Article  PubMed  CAS  Google Scholar 

  11. Irvin, D. K., Dhaka, A., Hicks, C., Weinmaster, G., and Kornblum, H. I. (2003) Extrinsic and intrinsic factors governing cell fate in cortical progenitor cultures. Dev. Neurosci. 25, 162–172.

    Article  PubMed  CAS  Google Scholar 

  12. Morshead, C. M., Benveniste, P., Iscove, N. N., and van der Kooy, D. (2002) Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Nat. Med. 8, 268–273.

    Article  PubMed  CAS  Google Scholar 

  13. Parmar, M., Skogh, C., Bjorklund, A., and Campbell, K. (2002) Regional specification of neurosphere cultures derived from subregions of the embryonic telencephalon. Mol. Cell Neurosci. 21, 645–656.

    Article  PubMed  CAS  Google Scholar 

  14. Eriksson, C., Bjorklund, A., and Wictorin, K. (2003) Neuronal differentiation following trans-plantation of expanded mouse neurosphere cultures derived from different embryonic forebrain regions. Exp. Neurol. 184, 615–635.

    Article  PubMed  Google Scholar 

  15. Fricker, R. A., Carpenter, M. K., Winkler, C., Greco, C., Gates, M. A., and Bjorklund, A. (1999) Site-specific migration and neuronal differentiation of human neural progenitor cells after transplantation in the adult rat brain. J. Neurosci. 19, 5990–6005.

    PubMed  CAS  Google Scholar 

  16. Reynolds, B. A. and Rietze, R. L. (2005) Neural stem cells and neurospheres—re-evaluating the relationship Nat. Methods 2, 333–336.

    Article  PubMed  CAS  Google Scholar 

  17. Parmar, M., Sjoberg, A., Bjorklund, A., and Kokaia, Z. (2003). Phenotypic and molecular identity of cells in the adult subventricular zone. in vivo and after expansion in vitro. Mol. Cell Neurosci. 24, 741–752.

    Article  PubMed  CAS  Google Scholar 

  18. Suslov, O. N., Kukekov, V. G., Ignatova, T. N., and Steindler, D. A. (2002) Neural stem cell heterogeneity demonstrated by molecular phenotyping of clonal neurospheres. Proc. Natl. Acad. Sci. USA 99, 14,506–14,511.

    Article  CAS  Google Scholar 

  19. Aubert, J., Stavridis, M. P., Tweedie, S. et al. (2003) Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Soxl-gfp knockin mice. Proc. Natl. Acad. Sci. USA 100 Suppl 1, 11,836–11,841.

    CAS  Google Scholar 

  20. Barraud, P., Thompson, L., Kirik, D., Bjorklund, A., and Parmar, M. (2005) Isolation and characterization of neural precursor cells from the Sox1-GFP reporter mouse. Eur. J. Neurosci. 22, 1555–1569.

    Article  PubMed  Google Scholar 

  21. Rietze, R. L., Valcanis, H., Brooker, G. F., Thomas, T., Voss, A. K., and Bartlett, P. F. (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739.

    Article  PubMed  CAS  Google Scholar 

  22. Uchida, N., Buck, D. W., He, D., et al. (2000) Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14,720–14,725.

    Article  CAS  Google Scholar 

  23. Palmer, T. D., Takahashi, J. and Gage, F. H. (1997) The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404.

    Article  PubMed  CAS  Google Scholar 

  24. Conti, L., Pollard, S. M., Gorba, T., et al. (2005) Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 3, e283.

    Article  PubMed  CAS  Google Scholar 

  25. Campos, L. S., Leone, D. P., Relvas, J. B., et al. (2004) Betal integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131, 3433–3444.

    Article  PubMed  CAS  Google Scholar 

  26. Jensen, J. B., Bjorklund, A., and Parmar, M. (2004) Striatal neuron differentiation from neurosphere-expanded progenitors depends on Gsh2 expression. J. Neurosci. 24, 6958–6967.

    Article  PubMed  CAS  Google Scholar 

  27. Santa-Olalla, J., Baizabal, J. M., Fregoso, M., del Carmen Cardenas, M., and Covarrubias, L. (2003) The in vivo positional identity gene expression code is not preserved in neural stem cells grown in culture. Eur. J. Neurosci. 18, 1073–1084.

    Article  PubMed  Google Scholar 

  28. Hitoshi, S., Tropepe, V., Ekker, M., and van der Kooy, D. (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129, 233–244.

    PubMed  CAS  Google Scholar 

  29. Klein, C., Butt, S. J., Machold, R. P., Johnson, J. E., and Fishell, G. (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132, 4497–4508.

    Article  PubMed  CAS  Google Scholar 

  30. Falk, A., Holmstrom, N., Carlen, M., Cassidy, R., Lundberg, C., and Frisen, J. (2002) Gene delivery to adult neural stem cells. Exp. Cell Res. 279, 34–39.

    Article  PubMed  CAS  Google Scholar 

  31. Heins, N., Malatesta, P., Cecconi, F., et al. (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315.

    Article  PubMed  CAS  Google Scholar 

  32. Ostenfeld, T., Joly, E., Tai, Y. T., et al. (2002) Regional specification of rodent and human neurospheres. Brain Res. Dev. Brain Res. 134, 43–55.

    Article  PubMed  CAS  Google Scholar 

  33. Zappone, M. V., Galli, R., Catena, R. et al. (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells, Development 127, 2367–2382.

    PubMed  CAS  Google Scholar 

  34. Deacon, T. W., Pakzaban, P., and Isacson, O. (1994) The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence. Brain Res. 668, 211–219.

    Article  PubMed  Google Scholar 

  35. Corbin, J. G., Gaiano, N., Machold, R. P., Langston, A., Fishell, G. (2006) The Gsh homeodomain gene controls multiple aspects of telencephalic development. Development 127, 5007–5020.

    Google Scholar 

  36. Stenman, J., Toresson, H., and Campbell, K. (2003) Identification of two distinct progenitor populations in the lateral ganglionic eminence: implications for striatal and olfactory bulb neurogenesis. J. Neurosci. 23, 167–174.

    PubMed  CAS  Google Scholar 

  37. Toresson, H., Potter, S. S., and Campbell, K. (2000) Genetic control of dorsal-ventral identity in the telencephalon: opposing roles for Pax6 and Gsh2. Development 127, 4361–4371.

    PubMed  CAS  Google Scholar 

  38. Chung, S., Shin, B. S., Hwang, M., et al. (2006) Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro. Stem Cells. 24, 1583–1593.

    Article  PubMed  CAS  Google Scholar 

  39. Gabay, L., Lowell, S., Rubin, L. L., and Anderson, D. J. (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499.

    Article  PubMed  CAS  Google Scholar 

  40. Dunnett, S. B., Bjorklund, A., and Lindvall, O. (2001) Cell therapy in Parkinson's disease—stop or go? Nat. Rev. Neurosci. 2, 365–369.

    Article  PubMed  CAS  Google Scholar 

  41. Lindvall, O., and Bjokklund, A. (2004) Cell therapy in Parkinson's disease. NeuroRx. 1, 382–393.

    Article  PubMed  Google Scholar 

  42. Nikkhah, G., Olsson, M., Eberhard, J., Bentlage, C., Cunningham, M. G., and Bjorklund, A. (1994) A microtransplantation approach for cell suspension grafting in the rat Parkinson model: a detailed account of the methodology. Neuroscience 63, 57–72.

    Article  PubMed  CAS  Google Scholar 

  43. Winkler, C., Kirik, D., Bjorklund, A., and Dunnett, S. B. (2000) Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. Prog. Brain Res. 127, 233–265.

    Article  PubMed  CAS  Google Scholar 

  44. Campbell, K., Olsson, M., and Bjorklund, A. (1995) Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle. Neuron 15, 1259–1273.

    Article  PubMed  CAS  Google Scholar 

  45. Olsson, M., Bjorklund, A., and Campbell, K. (1998) Early specification of striatal projection neurons and interneuronal subtypes in the lateral and medial ganglionic eminence. Neuroscience 84, 867–876.

    Article  PubMed  CAS  Google Scholar 

  46. Englund, U., Fricker-Gates, R. A., Lundberg, C., Bjorklund, A., and Wictorin, K., (2002) Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp. Neurol. 173, 1–21.

    Article  PubMed  CAS  Google Scholar 

  47. Flax, J. D., Aurora, S., Yang, C., et al. (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat. Biotechnol. 16, 1033–1039.

    Article  PubMed  CAS  Google Scholar 

  48. Svendsen, C. N., Caldwell, M. A., Shen, J., et al. (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp. Neurol. 148, 135–146.

    Article  PubMed  CAS  Google Scholar 

  49. Winkler, C., Fricker, R. A., Gates, M. A., et al. (1998) Incorporation and glial differentiation of mouse EGF-responsive neural progenitor cells after transplantation into the embryonic rat brain. Mol. Cell Neurosci. 11, 99–116.

    Article  PubMed  CAS  Google Scholar 

  50. Vroemen, M., Aigner, L., Winkler, J., and Weidner, N. (2003) Adult neural progenitor cell grafts survive after acute spinal cord injury and intergrate along axonal pathways. Eur. J. Neurosci. 18, 743–751.

    Article  PubMed  Google Scholar 

  51. Hofstetter, C. P., Holmstrom, N. A., Lilja, J. A., et al. (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 8, 346–353.

    Article  PubMed  CAS  Google Scholar 

  52. Alexson, T. O., Hitoshi, S., Coles, B. L., Bernstein, A., and van der Kooy, D. (2006) Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev. Neurosci. 28, 34–48.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, J.B., Parmar, M. Strengths and limitations of the neurosphere culture system. Mol Neurobiol 34, 153–161 (2006). https://doi.org/10.1385/MN:34:3:153

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:34:3:153

Index Entries

Navigation