Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 27, 2017

Regulatory role of NGFs in neurocognitive functions

  • Ashutosh Kumar EMAIL logo , Vikas Pareek , Muneeb A. Faiq , Pavan Kumar , Khursheed Raza , Pranav Prasoon , Subrahamanyam Dantham and Sankat Mochan

Abstract

Nerve growth factors (NGFs), especially the prototype NGF and brain-derived neurotrophic factor (BDNF), have a diverse array of functions in the central nervous system through their peculiar set of receptors and intricate signaling. They are implicated not only in the development of the nervous system but also in regulation of neurocognitive functions like learning, memory, synaptic transmission, and plasticity. Evidence even suggests their role in continued neurogenesis and experience-dependent neural network remodeling in adult brain. They have also been associated extensively with brain disorders characterized by neurocognitive dysfunction. In the present article, we aimed to make an exhaustive review of literature to get a comprehensive view on the role of NGFs in neurocognitive functions in health and disease. Starting with historical perspective, distribution in adult brain, implied molecular mechanisms, and developmental basis, this article further provides a detailed account of NGFs’ role in specified neurocognitive functions. Furthermore, it discusses plausible NGF-based homeostatic and adaptation mechanisms operating in the pathogenesis of neurocognitive disorders and has presents a survey of such disorders. Finally, it elaborates on current evidence and future possibilities in therapeutic applications of NGFs with an emphasis on recent research updates in drug delivery mechanisms. Conclusive remarks of the article make a strong case for plausible role of NGFs in comprehensive regulation of the neurocognitive functions and pathogenesis of related disorders and advocate that future research should be directed to explore use of NGF-based mechanisms in the prevention of implicated diseases as well as to target these molecules pharmacologically.

Acknowledgment

We are thankful to Professor Ritu Sehgal and Professor T.C. Nag, Department of Anatomy, AIIMS, New Delhi, India, for the necessary guidance and editing of the content.

References

Abdipranoto, A., Wu, S., Stayte, S., and Vissel, B. (2008). The role of neurogenesis in neurodegenerative diseases and its implications for therapeutic development. CNS Neurol. Disord. Drug Targets 7, 187–210.10.2174/187152708784083858Search in Google Scholar PubMed

Adkins, D.L., Boychuk, J., Remple, M.S., and Kleim, J.A. (2006). Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J. Appl. Physiol. 101, 1776–1782.10.1152/japplphysiol.00515.2006Search in Google Scholar PubMed

Airaksinen, M.S. and Saarma, M. (2002). The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394.10.1038/nrn812Search in Google Scholar PubMed

Alder, J., Thakker-Varia, S., Crozier, R.A., Shaheen, A., Plummer, M.R., and Black, I.B. (2005). Early presynaptic and late postsynaptic components contribute independently to brain-derived neurotrophic factor-induced synaptic plasticity. J. Neurosci. 25, 3080–3085.10.1523/JNEUROSCI.2970-04.2005Search in Google Scholar PubMed PubMed Central

Alleva, E. and Francia, N. (2009). Psychiatric vulnerability: suggestions from animal models and role of neurotrophins. Neurosci. Biobehav. Rev. 33, 525–536.10.1016/j.neubiorev.2008.09.004Search in Google Scholar PubMed

Aloe, L. (2004). Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol. 14, 395–399.10.1016/j.tcb.2004.05.011Search in Google Scholar PubMed

Alonso, M., Vianna, M.R.M., Depino, A.M., Mello e Souza, T., Pereira, P., Szapiro, G., Viola, H., Pitossi, F., Izquierdo, I., and Medina, J.H. (2002). BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus 12, 551–560.10.1002/hipo.10035Search in Google Scholar PubMed

Aloyz, R., Fawcett, J.P., Kaplan, D.R., Murphy, R.A., and Miller, F.D. (1999). Activity-dependent activation of TrkB neurotrophin receptors in the adult CNS. Learn Memory 6, 216–231.10.1101/lm.6.3.216Search in Google Scholar

Alvarez-Buylla, A. and Garcı́a-Verdugo, J.M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci, 22, 629–634.10.1523/JNEUROSCI.22-03-00629.2002Search in Google Scholar PubMed PubMed Central

Anderson, K.D., Alderson, R.F., Altar, C.A., DiStefano, P.S., Corcoran, T.L., Lindsay, R.M., and Wiegand, S.J. (1995). Differential distribution of exogenous BDNF, NGF, and NT-3 in the brain corresponds to the relative abundance and distribution of high-affinity and low-affinity neurotrophin receptors. J. Comp. Neurol. 357, 296–317.10.1002/cne.903570209Search in Google Scholar PubMed

Autry, A.E. and Monteggia, L.M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 64, 238–258.10.1124/pr.111.005108Search in Google Scholar PubMed PubMed Central

Avwenagha, O., Campbell, G., and Bird, M.M. (2003). Distribution of GAP-43, β-III tubulin and F-actin in developing and regenerating axons and their growth cones in vitro, following neurotrophin treatment. J. Neurocytol. 32, 1077–1089.10.1023/B:NEUR.0000021903.24849.6cSearch in Google Scholar PubMed

Ayer-LeLievre, C., Olson, L., Ebendal, T., Hallböök, F., and Persson, H. (1988). Nerve growth factor mRNA and protein in the testis and epididymis of mouse and rat. Proc. Natl. Acad. Sci. USA 85, 2628–2632.10.1073/pnas.85.8.2628Search in Google Scholar PubMed PubMed Central

Bamji, S.X., Rico, B., Kimes, N., and Reichardt, L.F. (2006). BDNF mobilizes synaptic vesicles and enhances synapse formation by disrupting cadherin-β-catenin interactions. J. Cell Biol. 174, 289–299.10.1083/jcb.200601087Search in Google Scholar PubMed PubMed Central

Banks, W.A., Kastin, A.J., and Broadwell, R.D. (1996). Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2, 241–248.10.1159/000097202Search in Google Scholar PubMed

Barbosa, I.G., Huguet, R.B., Neves, F.S., Reis, H.J., Bauer, M.E., Janka, Z., Palotás, A., and Teixeira, A.L. (2011). Impaired nerve growth factor homeostasis in patients with bipolar disorder. World J. Biol. Psychiatry 12, 228–232.10.3109/15622975.2010.518629Search in Google Scholar PubMed

Barde, Y.A., Edgar, D., and Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553.10.1002/j.1460-2075.1982.tb01207.xSearch in Google Scholar PubMed PubMed Central

Baseri, B., Choi, J.J., Deffieux, T., Samiotaki, M., Tung, Y.-S., Olumolade, O., Small, S.A., Morrison, B., and Konofagou, E.E. (2012). Activation of signaling pathways following localized delivery of systemically-administered neurotrophic factors across the blood-brain barrier using focused ultrasound and microbubbles. Phys. Med. Biol. 57, N65–N81.10.1088/0031-9155/57/7/N65Search in Google Scholar PubMed PubMed Central

Baudet, C., Mikaels, A., Westphal, H., Johansen, J., Johansen, T.E., and Ernfors, P. (2000). Positive and negative interactions of GDNF, NTN and ART in developing sensory neuron subpopulations, and their collaboration with neurotrophins. Development 127, 4335–4344.10.1242/dev.127.20.4335Search in Google Scholar PubMed

Bekinschtein, P., Oomen, C.A., Saksida, L.M., and Bussey, T.J. (2011). Effects of environmental enrichment and voluntary exercise on neurogenesis, learning and memory, and pattern separation: BDNF as a critical variable? Semin. Cell Dev. Biol. 22, 536–542.10.1016/j.semcdb.2011.07.002Search in Google Scholar PubMed

Benington, J.H. and Frank, M.G. (2003). Cellular and molecular connections between sleep and synaptic plasticity. Prog. Neurobiol. 69, 71–101.10.1016/S0301-0082(03)00018-2Search in Google Scholar

Berry, A., Bindocci, E., and Alleva, E. (2012). NGF, brain and behavioral plasticity. Neural. Plast. 2012, 784040.10.1155/2012/784040Search in Google Scholar PubMed PubMed Central

Bersani, G., Iannitelli, A., Maselli, P., Pancheri, P., Aloe, L., Angelucci, F., and Alleva, E. (1999). Low nerve growth factor plasma levels in schizophrenic patients: a preliminary study. Schizophr. Res. 37, 201.Search in Google Scholar

Bersani, G., Iannitelli, A., Massoni, E., Garavini, A., Grilli, A., Di Giannantonio, M., Conti, C.M., and Pancheri, P. (2004). Ultradian variation of nerve growth factor plasma levels in healthy and schizophrenic subjects. Int. J. Immunopathol. Pharmacol. 17, 367–372.10.1177/039463200401700316Search in Google Scholar PubMed

Berton, O., McClung, C.A., Dileone, R.J., Krishnan, V., Renthal, W., Russo, S.J., Graham, D., Tsankova, N.M., Bolanos, C.A., Rios, M., et al. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311, 864–868.10.1126/science.1120972Search in Google Scholar PubMed

Biane, J., Conner, J.M., and Tuszynski, M.H. (2014). Nerve growth factor is primarily produced by GABAergic neurons of the adult rat cortex. Front Cell Neurosci. 8, 220.10.3389/fncel.2014.00220Search in Google Scholar PubMed PubMed Central

Bie, B., Wang, Y., Cai, Y.-Q., Zhang, Z., Hou, Y.-Y., and Pan, Z.Z. (2012). Upregulation of nerve growth factor in central amygdala increases sensitivity to opioid reward. Neuropsychopharmacology 37, 2780–2788.10.1038/npp.2012.144Search in Google Scholar PubMed PubMed Central

Binder, D.K. (2007). Neurotrophins in the dentate gyrus. Prog. Brain Res. 163, 371–397.10.1016/S0079-6123(07)63022-2Search in Google Scholar PubMed

Bogle, O.A., Ratto, M.H., and Adams, G.P. (2011). Evidence for the conservation of biological activity of ovulation-inducing factor in seminal plasma. Reproduction 142, 277–283.10.1530/REP-11-0042Search in Google Scholar PubMed

Bogle, O.A., Ratto, M.H., and Adams, G.P. (2012). Ovulation-inducing factor (OIF) induces LH secretion from pituitary cells. Anim. Reprod. Sci. 133, 117–122.10.1016/j.anireprosci.2012.06.006Search in Google Scholar PubMed

Branchi, I., Francia, N., and Alleva, E. (2004). Epigenetic control of neurobehavioural plasticity: the role of neurotrophins. Behav. Pharmacol. 15, 353–362.10.1097/00008877-200409000-00006Search in Google Scholar PubMed

Branchi, I., D’Andrea, I., Fiore, M., Di Fausto, V., Aloe, L., and Alleva, E. (2006a). Early social enrichment shapes social behavior and nerve growth factor and brain-derived neurotrophic factor levels in the adult mouse brain. Biol. Psychiatry 60, 690–696.10.1016/j.biopsych.2006.01.005Search in Google Scholar PubMed

Branchi, I., D’Andrea, I., Sietzema, J., Fiore, M., Di Fausto, V., Aloe, L., and Alleva, E. (2006b). Early social enrichment augments adult hippocampal BDNF levels and survival of BrdU-positive cells while increasing anxiety-and “depression”-like behavior. J. Neurosci. Res. 83, 965–973.10.1002/jnr.20789Search in Google Scholar PubMed

Brancucci, A., Kuczewski, N., Covaceuszach, S., Cattaneo, A., and Domenici, L. (2004). Nerve growth factor favours long-term depression over long-term potentiation in layer II–III neurones of rat visual cortex. J. Physiol. 559, 497–506.10.1113/jphysiol.2004.068049Search in Google Scholar PubMed PubMed Central

Brandt, J.A., Churchill, L., Guan, Z., Fang, J., Chen, L., and Krueger, J.M. (2001). Sleep deprivation but not a whisker trim increases nerve growth factor within barrel cortical neurons. Brain Res. 898, 105–112.10.1016/S0006-8993(01)02149-7Search in Google Scholar

Brightman, F.A. and Fell, D.A. (2000). Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells. FEBS Lett. 482, 169–174.10.1016/S0014-5793(00)02037-8Search in Google Scholar

Brown, P. and McNeilly, A.S. (1999). Transcriptional regulation of pituitary gonadotrophin subunit genes. Rev. Reprod. 4, 117–124.10.1530/ror.0.0040117Search in Google Scholar PubMed

Brzecka, A. (2005). Brain preconditioning and obstructive sleep apnea syndrome. Acta Neurobiol. Exp. (Wars) 65, 213–20.Search in Google Scholar

Caleo, M. and Cenni, M.C. (2004). Anterograde transport of neurotrophic factors. Mol. Neurobiol. 29, 179–195.10.1385/MN:29:2:179Search in Google Scholar PubMed

Canals, J.M., Checa, N., Marco, S., Akerud, P., Michels, A., Pérez-Navarro, E., Tolosa, E., Arenas, E., and Alberch, J. (2001). Expression of brain-derived neurotrophic factor in cortical neurons is regulated by striatal target area. J. Neurosci. 21, 117–124.10.1523/JNEUROSCI.21-01-00117.2001Search in Google Scholar PubMed PubMed Central

Cao, X. and Shoichet, M.S. (2001). Defining the concentration gradient of nerve growth factor for guided neurite outgrowth. Neuroscience 103, 831–840.10.1016/S0306-4522(01)00029-XSearch in Google Scholar

Capsoni, S., Ugolini, G., Comparini, A., Ruberti, F., Berardi, N., and Cattaneo, A. (2000). Alzheimer-like neurodegeneration in aged antinerve growth factor transgenic mice. Proc. Natl. Acad. Sci. USA 97, 6826–6831.10.1073/pnas.97.12.6826Search in Google Scholar PubMed PubMed Central

Carmignoto, G., Pizzorusso, T., Tia, S., and Vicini, S. (1997). Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex. J. Physiol. 498, 153–164.10.1113/jphysiol.1997.sp021848Search in Google Scholar PubMed PubMed Central

Carter, B.D., Feng, N., and Paolocci, N. (2010). The p75 neurotrophin receptor, semaphorins, and sympathetic traffic in the heart. Am. J. Physiol. Heart Circ. 298, H1633–H1636.10.1152/ajpheart.00253.2010Search in Google Scholar PubMed PubMed Central

Casaccia-Bonnefil, P., Kong, H., and Chao, M.V. (1998). Neurotrophins: the biological paradox of survival factors eliciting apoptosis. Cell Death Differ. 5, 357–364.10.1038/sj.cdd.4400377Search in Google Scholar PubMed

Castrén, E. and Rantamäki, T. (2008). Neurotrophins in depression and antidepressant effects. Novartis Found. Symp. 289, 43–52.10.1002/9780470751251.ch4Search in Google Scholar PubMed

Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci. 4, 299–309.10.1038/nrn1078Search in Google Scholar PubMed

Chen, K.S., Nishimura, M.C., Armanini, M.P., Crowley, C., Spencer, S.D., and Phillips, H.S. (1997). Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons and memory deficits. J. Neurosci, 17, 7288–7296.10.1523/JNEUROSCI.17-19-07288.1997Search in Google Scholar PubMed PubMed Central

Chow, S.-F., Wick, S.D., and Riecke, H. (2012). Neurogenesis drives stimulus decorrelation in a model of the olfactory bulb. PLoS Comput Biol. 8, e1002398.10.1371/journal.pcbi.1002398Search in Google Scholar PubMed PubMed Central

Cirulli, F. and Alleva, E. (2009). The NGF saga: from animal models of psychosocial stress to stress-related psychopathology. Front. Neuroendocrinol. 30, 379–395.10.1016/j.yfrne.2009.05.002Search in Google Scholar PubMed

Cirulli, F., Micera, A., Alleva, E., and Aloe, L. (1998). Early maternal separation increases NGF expression in the developing rat hippocampus. Pharmacol. Biochem. Behav. 59, 853–858.10.1016/S0091-3057(97)00512-1Search in Google Scholar

Cohen, S. (1960). Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proc. Natl. Acad. Sci. USA 46, 302–311.10.1073/pnas.46.3.302Search in Google Scholar PubMed PubMed Central

Cohen-Cory, S. (1999). BDNF modulates, but does not mediate, activity-dependent branching and remodeling of optic axon arbors in vivo. J. Neurosci. 19, 9996–10003.10.1523/JNEUROSCI.19-22-09996.1999Search in Google Scholar PubMed PubMed Central

Connor, B. and Dragunow, M. (1998). The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res. Rev. 27, 1–39.10.1016/S0165-0173(98)00004-6Search in Google Scholar

Conner, J.M., Lauterborn, J.C., Yan, Q., Gall, C.M., and Varon, S. (1997). Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J. Neurosci. 17, 2295–2313.10.1523/JNEUROSCI.17-07-02295.1997Search in Google Scholar PubMed PubMed Central

Conner, J.M., Franks, K.M., Titterness, A.K., Russell, K., Merrill, D.A., Christie, B.R., Sejnowski, T.J., and Tuszynski, M.H. (2009). NGF is essential for hippocampal plasticity and learning. J. Neurosci. 29, 10883–10889.10.1523/JNEUROSCI.2594-09.2009Search in Google Scholar PubMed PubMed Central

Cortazzo, M.H., Kassis, E.S., Sproul, K.A., and Schor, N.F. (1996). Nerve growth factor (NGF)-mediated protection of neural crest cells from antimitotic agent-induced apoptosis: the role of the low-affinity NGF receptor. J. Neurosci, 16, 3895–3899.10.1523/JNEUROSCI.16-12-03895.1996Search in Google Scholar PubMed PubMed Central

Creedon, D.J., Tansey, M.G., Baloh, R.H., Osborne, P.A., Lampe, P.A., Fahrner, T.J., Heuckeroth, R.O., Milbrandt, J., Johnson, E.M. Jr., and Johnson, E.M. (1997). Neurturin shares receptors and signal transduction pathways with glial cell line-derived neurotrophic factor in sympathetic neurons. Proc. Natl. Acad. Sci. USA 94, 7018–7023.10.1073/pnas.94.13.7018Search in Google Scholar PubMed PubMed Central

Cunha, A.B., Frey, B.N., Andreazza, A.C., Goi, J.D., Rosa, A.R., Gonçalves, C.A., Santin, A., and Kapczinski, F. (2006). Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci. Lett. 398, 215–219.10.1016/j.neulet.2005.12.085Search in Google Scholar PubMed

Cunha, C., Brambilla, R., and Thomas, K.L. (2010). A simple role for BDNF in learning and memory? Front Mol Neurosci. 3, 1.10.3389/neuro.02.001.2010Search in Google Scholar PubMed PubMed Central

Curley, J.L., Catig, G.C., Horn-Ranney, E.L., and Moore, M.J. (2014). Sensory axon guidance with semaphorin 6A and nerve growth factor in a biomimetic choice point model. Biofabrication 6, 35026.10.1088/1758-5082/6/3/035026Search in Google Scholar PubMed PubMed Central

De Rosa, R., Garcia, A.A., Braschi, C., Capsoni, S., Maffei, L., Berardi, N., and Cattaneo, A. (2005). Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc. Natl. Acad. Sci. USA 102, 3811–3816.10.1073/pnas.0500195102Search in Google Scholar PubMed PubMed Central

Decker, M.W. and McGaugh, J.L. (1991). The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7, 151–168.10.1002/syn.890070209Search in Google Scholar PubMed

D’Intino, G., Paradisi, M., Fernandez, M., Giuliani, A., Aloe, L., Giardino, L., and Calzà, L. (2005). Cognitive deficit associated with cholinergic and nerve growth factor down-regulation in experimental allergic encephalomyelitis in rats. Proc. Natl. Acad. Sci. USA 102, 3070–3075.10.1073/pnas.0500073102Search in Google Scholar PubMed PubMed Central

DiStefano, P.S., Friedman, B., Radziejewski, C., Alexander, C., Boland, P., Schick, C.M., Lindsay, R.M., and Wiegand, S.J. (1992). The neurotrophins BDNF, NT-3 and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993.10.1016/0896-6273(92)90213-WSearch in Google Scholar PubMed

Dontchev, V.D. and Letourneau, P.C. (2002). Nerve growth factor and semaphorin 3A signaling pathways interact in regulating sensory neuronal growth cone motility. J. Neurosci. 22, 6659–6669.10.1523/JNEUROSCI.22-15-06659.2002Search in Google Scholar PubMed PubMed Central

Draganski, B. and May, A. (2008). Training-induced structural changes in the adult human brain. Behav. Brain Res. 192, 137–142.10.1016/j.bbr.2008.02.015Search in Google Scholar PubMed

Duman, R.S. and Monteggia, L.M. (2006). A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127.10.1016/j.biopsych.2006.02.013Search in Google Scholar PubMed

Dwivedi, Y. (2010). Brain-derived neurotrophic factor and suicide pathogenesis. Ann. Med. 42, 87–96.10.3109/07853890903485730Search in Google Scholar PubMed PubMed Central

Dwivedi, Y., Mondal, A.C., Rizavi, H.S. and Conley, R.R. (2005). Suicide brain is associated with decreased expression of neurotrophins. Biol. Psychiatry 58, 315–324.10.1016/j.biopsych.2005.04.014Search in Google Scholar PubMed

Ebendal, T. (1992). Function and evolution in the NGF family and its receptors. J. Neurosci. Res. 32, 461–470.10.1002/jnr.490320402Search in Google Scholar PubMed

Egleton, R.D. and Davis, T.P. (1997). Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18, 1431–1439.10.1016/S0196-9781(97)00242-8Search in Google Scholar PubMed

Emanuele, E., Politi, P., Bianchi, M., Minoretti, P., Bertona, M. and Geroldi, D. (2006). Raised plasma nerve growth factor levels associated with early-stage romantic love. Psychoneuroendocrinology 31, 288–294.10.1016/j.psyneuen.2005.09.002Search in Google Scholar PubMed

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kim, J.S., Heo, S., Alves, H., White, S.M., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017–3022.10.1073/pnas.1015950108Search in Google Scholar PubMed PubMed Central

Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D.A., and Gage, F.H. (1998). Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–1317.10.1038/3305Search in Google Scholar PubMed

Ernst, C., Chen, E., and Turecki, G. (2009). Histone methylation and decreased expression of TrkB. T1 in orbital frontal cortex of suicide completers. Mol. Psychiatry 14, 830–832.10.1038/mp.2009.35Search in Google Scholar PubMed

Esch, T. and Stefano, G.B. (2004). The neurobiology of pleasure, reward processes, addiction and their health implications. Neuro. Endocrinol. Lett. 25, 235–251.Search in Google Scholar

Eyjolfsdottir, H., Eriksdotter, M., Linderoth, B., Lind, G., Juliusson, B., Kusk, P., Almkvist, O., Andreasen, N., Blennow, K., Ferreira, D., et al. (2016). Targeted delivery of nerve growth factor to the cholinergic basal forebrain of Alzheimer’s disease patients: application of a second-generation encapsulated cell biodelivery device. Alzheimers Res. Ther. 8, 30.10.1186/s13195-016-0195-9Search in Google Scholar PubMed PubMed Central

Fahnestock, M., Michalski, B., Xu, B., and Coughlin, M.D. (2001). The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease. Mol. Cell Neurosci. 18, 210–220.10.1006/mcne.2001.1016Search in Google Scholar PubMed

Ferhat, L., Represa, A., Zouaoui-Aggoun, D., Ferhat, W., Ben-Ari, Y., and Khrestchatisky, M. (1997). FGF-2 induces nerve growth factor expression in cultured rat hippocampal neurons. Eur. J. Neurosci. 9, 1282–1289.10.1111/j.1460-9568.1997.tb01483.xSearch in Google Scholar PubMed

Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., and Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709.10.1038/381706a0Search in Google Scholar PubMed

Finkbeiner, S., Tavazoie, S. F., Maloratsky, A., Jacobs, K. M., Harris, K. M., and Greenberg, M. E. (1997). CREB: a major mediator of neuronal neurotrophin responses. Neuron 19, 1031–1047.10.1016/S0896-6273(00)80395-5Search in Google Scholar

Finkbeiner, S. (2000). CREB couples neurotrophin signals to survival messages. Neuron 25, 11–14.10.1016/S0896-6273(00)80866-1Search in Google Scholar

Firth, J., Stubbs, B., Rosenbaum, S., Vancampfort, D., Malchow, B., Schuch, F. Elliott, R., Nuechterlein, K.H., and Yung, A.R. (2016). Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr. Bull., sbw115.10.1093/schbul/sbw115Search in Google Scholar PubMed PubMed Central

Frank, M.G. (2012). Erasing synapses in sleep: is it time to be SHY? Neural. Plast. 2012, 264378.10.1155/2012/264378Search in Google Scholar PubMed PubMed Central

Friden, P.M., Walus, L.R., Watson, P., Doctrow, S.R., Kozarich, J.W., Bäckman, C., Bergman, H., Hoffer, B., Bloom, F., and Granholm, A.C. (1993). Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 259, 373–377.10.1126/science.8420006Search in Google Scholar PubMed

Friedman, W.J., Ernfors, P., and Persson, H. (1991). Transient and persistent expression of NT-3/HDNF mRNA in the rat brain during postnatal development. J. Neurosci. 11, 1577–1584.10.1523/JNEUROSCI.11-06-01577.1991Search in Google Scholar PubMed PubMed Central

Friedman, W.J., Black, I.B., and Kaplan, D.R. (1998). Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 84, 101–114.10.1016/S0306-4522(97)00526-5Search in Google Scholar

Gall, C. and Lauterborn, J. (1991). The dentate gyrus: a model system for studies of neurotrophin regulation. Epilepsy Res. Suppl. 7, 171–185.Search in Google Scholar

Gallagher, M. and Colombo, P.J. (1995). Ageing: the cholinergic hypothesis of cognitive decline. Curr. Opin. Neurobiol. 5, 161–168.10.1016/0959-4388(95)80022-0Search in Google Scholar PubMed

Gallo, G. and Letourneau, P.C. (2004). Regulation of growth cone actin filaments by guidance cues. J. Neurobiol. 58, 92–102.10.1002/neu.10282Search in Google Scholar PubMed

Gascon, E., Vutskits, L., Zhang, H., Barral-Moran, M., Kiss, P., Mas, C., and Kiss, J.Z. (2005). Sequential activation of p75 and TrkB is involved in dendritic development of subventricular zone-derived neuronal progenitors in vitro. Eur. J. Neurosci. 21, 69–80.10.1111/j.1460-9568.2004.03849.xSearch in Google Scholar PubMed

Gehler, S., Shaw, A.E., Sarmiere, P.D., Bamburg, J.R., and Letourneau, P.C. (2004). Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. J. Neurosci. 24, 10741–10749.10.1523/JNEUROSCI.2836-04.2004Search in Google Scholar PubMed PubMed Central

Gioiosa, L., Iannitelli, A., and Aloe, L. (2009). Stress, anxiety schizophrenia and neurotrophic factors: the pioneer studies with nerve growth factor. Riv Psichiatr. 44, 88–94.Search in Google Scholar

Giuliani, A., D’Intino, G., Paradisi, M., Giardino, L., and Calza, L. (2004). p75 NTR-Immunoreactivity in the subventricular zone of adult male rats: expression by cycling cells. J. Mol. Histol. 35, 749–758.10.1007/s10735-004-9609-2Search in Google Scholar PubMed

Gooney, M. and Lynch, M. (2001). Long-term potentiation in the dentate gyrus of the rat hippocampus is accompanied by brain-derived neurotrophic factor-induced activation of TrkB. J. Neurochem. 77, 1198–1207.10.1046/j.1471-4159.2001.00334.xSearch in Google Scholar PubMed

Götz, R., Köster, R., Winkler, C., Raulf, F., Lottspeich, F., Schartl, M., and Thoenen, H. (1994). Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372, 266–269.10.1038/372266a0Search in Google Scholar PubMed

Granholm, A.C., Bäckman, C., Bloom, F., Ebendal, T., Gerhardt, G.A., Hoffer, B., Mackerlova, L., Olson, L., Söderström, S., Walus, L.R., et al. (1994). NGF and anti-transferrin receptor antibody conjugate: short and long-term effects on survival of cholinergic neurons in intraocular septal transplants. J. Pharm. Exp. Ther. 268, 448–459.Search in Google Scholar

Green, C.R., Corsi-Travali, S., and Neumeister, A. (2013). The role of BDNF-TrkB signaling in the pathogenesis of PTSD. J. Depress. Anxiety. 2013 (S4), pii 006.Search in Google Scholar

Griffin, É.W., Mullally, S., Foley, C., Warmington, S.A., O’Mara, S.M., and Kelly, Á.M. (2011). Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol. Behav. 104, 934–941.10.1016/j.physbeh.2011.06.005Search in Google Scholar PubMed

Gu, H., Long, D., Song, C., and Li, X. (2009). Recombinant human NGF-loaded microspheres promote survival of basal forebrain cholinergic neurons and improve memory impairments of spatial learning in the rat model of Alzheimer’s disease with fimbria-fornix lesion. Neurosci. Lett. 453, 204–209.10.1016/j.neulet.2009.02.027Search in Google Scholar PubMed

Guo, L., Yeh, M.L., Cuzon Carlson, V.C., Johnson-Venkatesh, E.M., and Yeh, H.H. (2012). Nerve growth factor in the hippocamposeptal system: evidence for activity-dependent anterograde delivery and modulation of synaptic activity. J. Neurosci. 32, 7701–7710.10.1523/JNEUROSCI.0028-12.2012Search in Google Scholar PubMed PubMed Central

Hadjiconstantinou, M., McGuire, L., Duchemin, A.-M., Laskowski, B., Kiecolt-Glaser, J., and Glaser, R. (2001). Changes in plasma nerve growth factor levels in older adults associated with chronic stress. J. Neuroimmunol. 116, 102–106.10.1016/S0165-5728(01)00278-8Search in Google Scholar PubMed

Hallböök, F. (1999). Evolution of the vertebrate neurotrophin and Trk receptor gene families. Curr. Opin. Neurobiol. 9, 616–621.10.1016/S0959-4388(99)00011-2Search in Google Scholar PubMed

Hallböök, F., Ibáñez, C.F., and Persson, H. (1991). Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6, 845–858.10.1016/0896-6273(91)90180-8Search in Google Scholar PubMed

Harrington, A.W., and Ginty, D.D. (2013). Long-distance retrograde neurotrophic factor signalling in neurons. Nat. Rev. Neurosci. 14, 177–187.10.1038/nrn3253Search in Google Scholar PubMed

Harward, S.C., Hedrick, N.G., Hall, C.E., Parra-Bueno, P., Milner, T.A., Pan, E., Laviv, T., Hempstead, B.L., Yasuda, R., and McNamara, J.O. (2016). Autocrine BDNF–TrkB signalling within a single dendritic spine. Nature 538, 99–103.10.1038/nature19766Search in Google Scholar PubMed PubMed Central

Hasan, W. and Smith, P.G. (2000). Nerve growth factor expression in parasympathetic neurons: regulation by sympathetic innervation. Eur. J. Neurosci. 12, 4391–4397.10.1046/j.0953-816X.2000.01353.xSearch in Google Scholar

Heberlein, A., Muschler, M., Frieling, H., Behr, M., Eberlein, C., Wilhelm, J., Gröschl, M., Kornhuber, J., Bleich, S., and Hillemacher, T. (2013). Epigenetic down regulation of nerve growth factor during alcohol withdrawal. Addict. Biol. 18, 508–510.10.1111/j.1369-1600.2010.00307.xSearch in Google Scholar PubMed

Hedrick, N.G., Harward, S.C., Hall, C.E., Murakoshi, H., McNamara, J.O., and Yasuda, R. (2016). Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity. Nature 538, 104–108.10.1038/nature19784Search in Google Scholar PubMed PubMed Central

Hefti, F. and Weiner, W.J. (1986). Nerve growth factor and Alzheimer’s disease. Ann. Neurol. 20, 275–281.10.1002/ana.410200302Search in Google Scholar PubMed

Hennigan, A., O’Callaghan, R.M., and Kelly, Á.M. (2007). Neurotrophins and their receptors: roles in plasticity, neurodegeneration and neuroprotection. Biochem. Soc. Trans. 35, 424–427.10.1042/BST0350424Search in Google Scholar PubMed

Henriksson, B., Söderström, S., Gower, A., Ebendal, T., Winblad, B., and Mohammed, A. (1992). Hippocampal nerve growth factor levels are related to spatial learning ability in aged rats. Behav. Brain Res. 48, 15–20.10.1016/S0166-4328(05)80134-2Search in Google Scholar

Higgins, G.A., Koh, S., Chen, K.S., and Gage, F.H. (1989). NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3, 247–256.10.1016/0896-6273(89)90038-XSearch in Google Scholar

Hofer, M., Pagliusi, S.R., Hohn, A., Leibrock, J., and Barde, Y.A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464.10.1002/j.1460-2075.1990.tb07423.xSearch in Google Scholar PubMed PubMed Central

Jackson, G., Werrbach-Perez, K., Pan, Z., Sampath, D., and Perez-Polo, J. (1994). Neurotrophin regulation of energy homeostasis in the central nervous system. Dev. Neurosc. 16, 285–290.10.1159/000112121Search in Google Scholar PubMed

Jeanneteau, F.D., Lambert, W.M., Ismaili, N., Bath, K.G., Lee, F.S., Garabedian, M.J., and Chao, M.V. (2012). BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus. Proc. Natl. Acad. Sci. USA 109, 1305–1310.10.1073/pnas.1114122109Search in Google Scholar PubMed PubMed Central

Ji, Y., Lu, Y., Yang, F., Shen, W., Tang, T.T.-T., Feng, L., Duan, S., and Lu, B. (2010). Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in hippocampal neurons. Nat. Neurosci. 13, 302–309.10.1038/nn.2505Search in Google Scholar PubMed PubMed Central

Jiang, B., Akaneya, Y., Ohshima, M., Ichisaka, S., Hata, Y., and Tsumoto, T. (2001). Brain-derived neurotrophic factor induces long-lasting potentiation of synaptic transmission in visual cortex in vivo in young rats, but not in the adult. Eur. J. Neurosci. 14, 1219–1228.10.1046/j.0953-816x.2001.01751.xSearch in Google Scholar PubMed

Jockers-ScherüBl, M.C., Matthies, U., Danker-Hopfe, H., Lang, U.E., Mahlberg, R., and Hellweg, R. (2003). Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients. J. Psychopharmacol. 17, 439–445.10.1177/0269881103174007Search in Google Scholar PubMed

Jockers-Scherübl, M.C., Rentzsch, J., Danker-Hopfe, H., Radzei, N., Schürer, F., Bahri, S., and Hellweg, R. (2006). Adequate antipsychotic treatment normalizes serum nerve growth factor concentrations in schizophrenia with and without cannabis or additional substance abuse. Neurosci. Lett. 400, 262–266.10.1016/j.neulet.2006.02.056Search in Google Scholar PubMed

Jung, Y.-H., Kang, D.-H., Byun, M.S., Shim, G., Kwon, S.J., Jang, G.-E., Lee, U.S., An, S.C., Jang, J.H., and Kwon, J.S. (2012). Influence of brain-derived neurotrophic factor and catechol O-methyl transferase polymorphisms on effects of meditation on plasma catecholamines and stress. Stress 15, 97–104.10.3109/10253890.2011.592880Search in Google Scholar PubMed

Kalil, K. and Dent, E.W. (2005). Touch and go: guidance cues signal to the growth cone cytoskeleton. Curr. Opin. Neurobiol. 15, 521–526.10.1016/j.conb.2005.08.005Search in Google Scholar PubMed

Kang, E., Wen, Z., Song, H., Christian, K.M., and Ming, G. (2016). Adult neurogenesis and psychiatric disorders. Cold Spring Harb Perspect Biol. 8, a019026.10.1101/cshperspect.a019026Search in Google Scholar PubMed PubMed Central

Kasselman, L.J., Sideris, A., Bruno, C., Perez, W.R., Cai, N., Nicoletti, J.N., Wiegand, S.J., and Croll, S.D. (2006). BDNF: a missing link between sympathetic dysfunction and inflammatory disease? J Neuroimmunol. 175, 118–127.10.1016/j.jneuroim.2006.03.008Search in Google Scholar PubMed

Kelly, A., Conroy, S., and Lynch, M.A. (1998). Evidence that nerve growth factor plays a role in long-term potentiation in the rat dentate gyrus. Neuropharmacology 37, 561–570.10.1016/S0028-3908(98)00048-3Search in Google Scholar

Kimhy, D., Vakhrusheva, J., Bartels, M.N., Armstrong, H.F., Ballon, J.S., Khan, S., Chang, R.W., Hansen, M.C., Ayanruoh, L., Lister, A., et al. (2015). The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind, randomized clinical trial. Schizophr. Bull. 41, 859–868.10.1093/schbul/sbv022Search in Google Scholar PubMed PubMed Central

Koh, S., Chang, P., Collier, T.J., and Loy, R. (1989). Loss of NGF receptor immunoreactivity in basal forebrain neurons of aged rats: correlation with spatial memory impairment. Brain Res. 498, 397–404.10.1016/0006-8993(89)91125-6Search in Google Scholar PubMed

Kramer, B.M.R., Cruijsen, P.M.J.M., Ouwens, D.T.W.M., Coolen, M.W., Martens, G.J.M., Roubos, E.W., and Jenks, B.G. (2002). Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis. Endocrinology 143, 1337–1345.10.1210/endo.143.4.8721Search in Google Scholar PubMed

Krueger, J.M. and Majde, J.A. (2003). Humoral links between sleep and the immune system. Ann. N. Y. Acad. Sci. 992, 9–20.10.1111/j.1749-6632.2003.tb03133.xSearch in Google Scholar PubMed

Krueger, J.M., Obál, F., Fang, J., Kubota, T., and Taishi, P. (2001). The role of cytokines in physiological sleep regulation. Ann. N. Y. Acad. Sci. 933, 211–221.10.1111/j.1749-6632.2001.tb05826.xSearch in Google Scholar PubMed

Krüttgen, A., Möller, J.C., Heymach, J.V., and Shooter, E.M. (1998). Neurotrophins induce release of neurotrophins by the regulated secretory pathway. Proc. Natl. Acad. Sci. USA 95, 9614–9619.10.1073/pnas.95.16.9614Search in Google Scholar PubMed PubMed Central

Kunugi, H., Hori, H., Adachi, N., and Numakawa, T. (2010). Interface between hypothalamic-pituitary-adrenal axis and brain-derived neurotrophic factor in depression. Psychiatry Clin. Neurosci. 64, 447–459.10.1111/j.1440-1819.2010.02135.xSearch in Google Scholar PubMed

Küppers, E. and Beyer, C. (2001). Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 12, 1175–1179.10.1097/00001756-200105080-00025Search in Google Scholar PubMed

Kurakhmaeva, K.B., Djindjikhashvili, I.A., Petrov, V.E., Balabanyan, V.U., Voronina, T.A., Trofimov, S.S., Kreuter, J., Gelperina, S., Begley, D., and Alyautdin, R.N. (2009). Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J. Drug Target 17, 564–574.10.1080/10611860903112842Search in Google Scholar PubMed

Lai, K.O., Fu, W.Y., Ip, F.C., and Ip, N.Y. (1998). Cloning and expression of a novel neurotrophin, NT-7, from carp. Mol. Cell Neurosci. 11, 64–76.10.1006/mcne.1998.0666Search in Google Scholar PubMed

Lakshmanan, J. (1986). Aggressive behavior in adult male mice elevates serum nerve growth factor levels. Am. J. Physiol. Endocrinol. Metab. 250, E386–E392.10.1152/ajpendo.1986.250.4.E386Search in Google Scholar PubMed

Lam, A., Fuller, F., Miller, J., Kloss, J., Manthorpe, M., Varon, S., and Cordell, B. (1991). Sequence and structural organization of the human gene encoding ciliary neurotrophic factor. Gene 102, 271–276.10.1016/0378-1119(91)90089-TSearch in Google Scholar PubMed

Laske, C. and Eschweiler, G. (2006). Brain-derived neurotrophic factor. Nervenarzt 77, 523–537.10.1007/s00115-005-1971-0Search in Google Scholar PubMed

Lau, D., Bengtson, C.P., Buchthal, B., and Bading, H. (2015). BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A. Cell Rep. 12, 1353–1366.10.1016/j.celrep.2015.07.038Search in Google Scholar PubMed

Leal, G., Comprido, D., and Duarte, C.B. (2014). BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 76 Pt C, 639–656.10.1016/j.neuropharm.2013.04.005Search in Google Scholar PubMed

Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H., and Barde, Y.-A. (1989). Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152.10.1038/341149a0Search in Google Scholar PubMed

Lepousez, G., Valley, M.T., and Lledo, P.-M. (2013). The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu. Rev. Physiol. 75, 339–363.10.1146/annurev-physiol-030212-183731Search in Google Scholar PubMed

Lessmann, V. and Heumann, R. (1998). Modulation of unitary glutamatergic synapses by neurotrophin-4/5 or brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement depends on pre-established paired-pulse facilitation. Neuroscience 86, 399–413.10.1016/S0306-4522(98)00035-9Search in Google Scholar

Levi-Montalcini, R. and Angeletti, P.U. (1968). Nerve growth factor. Physiol. Rev. 48, 534–569.10.1152/physrev.1968.48.3.534Search in Google Scholar PubMed

Levi-Montalcini, R., Skaper, S.D., Dal Toso, R., Petrelli, L., and Leon, A. (1996). Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci. 19, 514–520.10.1016/S0166-2236(96)10058-8Search in Google Scholar PubMed

Levine, S. (2001). Primary social relationships influence the development of the hypothalamic-pituitary-adrenal axis in the rat. Physiol. Behav. 73, 255–260.10.1016/S0031-9384(01)00496-6Search in Google Scholar

Levine, E.S., Dreyfus, C.F., Black, I.B., and Plummer, M.R. (1995). Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. USA 92, 8074–8077.10.1073/pnas.92.17.8074Search in Google Scholar

Levone, B.R., Cryan, J.F., and O’Leary, O.F. (2015). Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress. 1, 147–155.10.1016/j.ynstr.2014.11.003Search in Google Scholar

Li, Y., and Fivaz, M. (2008). Feedback-mediated neuronal competition for survival cues regulates innervation of a target tissue. BioEssays 30, 929–933.10.1002/bies.20824Search in Google Scholar

Li, Y., Jia, Y.-C., Cui, K., Li, N., Zheng, Z.-Y., Wang, Y., and Yuan, X. (2005). Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434, 894–898.10.1038/nature03477Search in Google Scholar

Licinio, J. and others. (2002). Brain-derived neurotrophic factor (BDNF) in stress and affective disorders. Mol. Psychiatry 7, 519.10.1038/sj.mp.4001211Search in Google Scholar

Lim, S., Airavaara, M., and Harvey, B.K. (2010). Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol. Res. 61, 14–26.10.1016/j.phrs.2009.10.002Search in Google Scholar

Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S., and Collins, F. (1993). GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132.10.1126/science.8493557Search in Google Scholar

Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learn Memory, 10, 86–98.10.1101/lm.54603Search in Google Scholar

Lu, B. and Chow, A. (1999). Neurotrophins and hippocampal synaptic transmission and plasticity. J. Neurosci. Res. 58, 76–87.10.1002/(SICI)1097-4547(19991001)58:1<76::AID-JNR8>3.0.CO;2-0Search in Google Scholar

Lu, B., Pang, P.T., and Woo, N.H. (2005). The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6, 603–614.10.1038/nrn1726Search in Google Scholar

Lu, B., Nagappan, G., and Lu, Y. (2014). BDNF and synaptic plasticity, cognitive function, and dysfunction. In: Neurotrophic Factors (Springer), pp. 223–250.10.1007/978-3-642-45106-5_9Search in Google Scholar PubMed

Luther, J.A., Enes, J., and Birren, S.J. (2013). Neurotrophins regulate cholinergic synaptic transmission in cultured rat sympathetic neurons through a p75-dependent mechanism. J. Neurophysiol. 109, 485–496.10.1152/jn.00076.2011Search in Google Scholar PubMed PubMed Central

Lykissas, M.G., Batistatou, A.K., Charalabopoulos, K.A., and Beris, A.E. (2007). The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurovasc. Res. 4, 143–151.10.2174/156720207780637216Search in Google Scholar PubMed

Ma, L., Reis, G., Parada, L.F., and Schuman, E.M. (1999). Neuronal NT-3 is not required for synaptic transmission or long-term potentiation in area CA1 of the adult rat hippocampus. Learn Memory 6, 267–275.10.1101/lm.6.3.267Search in Google Scholar

Madara, J.C. and Levine, E.S. (2008). Presynaptic and postsynaptic NMDA receptors mediate distinct effects of brain-derived neurotrophic factor on synaptic transmission. J. Neurophysiol. 100, 3175–3184.10.1152/jn.90880.2008Search in Google Scholar PubMed PubMed Central

Maffei, L. (2002). Plasticity in the visual system: role of neurotrophins and electrical activity. Arch. Ital. Biol. 140, 341–346.Search in Google Scholar

Maggirwar, S.B., Sarmiere, P.D., Dewhurst, S., and Freeman, R.S. (1998). Nerve growth factor-dependent activation of NF-κB contributes to survival of sympathetic neurons. J. Neurosci, 18, 10356–10365.10.1523/JNEUROSCI.18-24-10356.1998Search in Google Scholar PubMed PubMed Central

Maisonpierre, P.C., Belluscio, L., Squinto, S., Ip, N.Y., Furth, M.E., Lindsay, R.M., and Yancopoulos, G.D. (1990). Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247, 1446–1451.10.1126/science.247.4949.1446Search in Google Scholar PubMed

Marini, A.M., Jiang, X., Wu, X., Tian, F., Zhu, D., Okagaki, P., and Lipsky, R.H. (2004). Role of brain-derived neurotrophic factor and NF-κB in neuronal plasticity and survival: From genes to phenotype. Restor. Neurol. Neurosci. 22, 121–130.Search in Google Scholar

Marler, K.J., Poopalasundaram, S., Broom, E.R., Wentzel, C., and Drescher, U. (2010). Pro-neurotrophins secreted from retinal ganglion cell axons are necessary for ephrinA-p75NTR-mediated axon guidance. Neural Dev. 5, 30.10.1186/1749-8104-5-30Search in Google Scholar PubMed PubMed Central

Martinez-Serrano, A., Fischer, W., and Björklund, A. (1995). Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 15, 473–484.10.1016/0896-6273(95)90051-9Search in Google Scholar PubMed

Marty, S. and Berninger, B. (1997). Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci. 20, 198–202.10.1016/S0166-2236(96)01026-0Search in Google Scholar PubMed

Massa, S.M., Xie, Y., Yang, T., Harrington, A.W., Kim, M.L., Yoon, S.O., Kraemer, R., Moore, L.A., Hempstead, B.L., and Longo, F.M. (2006). Small, nonpeptide p75NTR ligands induce survival signaling and inhibit proNGF-induced death. J. Neurosci. 26, 5288–5300.10.1523/JNEUROSCI.3547-05.2006Search in Google Scholar PubMed PubMed Central

Massa, S.M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J.N., Nehama, D., Rajadas, J., and Longo, F.M. (2010). Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 120, 1774–1785.10.1172/JCI41356Search in Google Scholar PubMed PubMed Central

Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., and Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.10.1038/nature02617Search in Google Scholar PubMed PubMed Central

Mattson, M.P. (2005). Energy intake, meal frequency, and health: a neurobiological perspective. Annu. Rev. Nutr. 25, 237–260.10.1146/annurev.nutr.25.050304.092526Search in Google Scholar PubMed

McCormick, A.M., Jarmusik, N.A., and Leipzig, N.D. (2015). Co-immobilization of semaphorin3A and nerve growth factor to guide and pattern axons. Acta Biomater. 28, 33–44.10.1016/j.actbio.2015.09.022Search in Google Scholar PubMed

Meakin, S.O. and Shooter, E.M. (1992). The nerve growth factor family of receptors. Trends Neurosci. 15, 323–331.10.1016/0166-2236(92)90047-CSearch in Google Scholar

Milbrandt, J. (1987). A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 238, 797–799.10.1126/science.3672127Search in Google Scholar PubMed

Ming, G.L, Lohof, A.M., and Zheng, J.Q. (1997). Acute morphogenic and chemotropic effects of neurotrophins on cultured embryonic Xenopus spinal neurons. J. Neurosci. 17, 7860–7871.10.1523/JNEUROSCI.17-20-07860.1997Search in Google Scholar PubMed PubMed Central

Minichiello, L., Korte, M., Wolfer, D., Kühn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H.P., Bonhoeffer, T., and Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414.10.1016/S0896-6273(00)80853-3Search in Google Scholar

Minichiello, L., Calella, A.M., Medina, D.L., Bonhoeffer, T., Klein, R., and Korte, M. (2002). Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36, 121–137.10.1016/S0896-6273(02)00942-XSearch in Google Scholar

Mizuno, M., Yamada, K., Takei, N., Tran, M.H., He, J., Nakajima, A., Nawa, H., and Nabeshima, T. (2003). Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol. Psychiatry 8, 217–224.10.1038/sj.mp.4001215Search in Google Scholar PubMed

Moguel-González, M., Gómez-Palacio-Schjetnan, A., and Escobar, M.L. (2008). BDNF reverses the CTA memory deficits produced by inhibition of protein synthesis. Neurobiol Learn Mem. 90, 584–587.10.1016/j.nlm.2008.06.003Search in Google Scholar PubMed

Molteni, R., Barnard, R., Ying, Z., Roberts, C., and Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience 112, 803–814.10.1016/S0306-4522(02)00123-9Search in Google Scholar PubMed

Monfils, M.-H., Cowansage, K.K., and LeDoux, J.E. (2007). Brain-derived neurotrophic factor: linking fear learning to memory consolidation. Mol. Pharmacol. 72, 235–237.10.1124/mol.107.038232Search in Google Scholar PubMed

Monteggia, L.M., Barrot, M., Powell, C.M., Berton, O., Galanis, V., Gemelli, T., Meuth, S., Nagy, A., Greene, R.W., and Nestler, E.J. (2004). Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc. Natl. Acad. Sci. USA 101, 10827–10832.10.1073/pnas.0402141101Search in Google Scholar PubMed PubMed Central

Morinobu, S., Nibuya, M., and Duman, R.S. (1998). Stress and BDNF signal transduction: implications for stress-related psychiatric disorders. In: Signal Transduction in Affective Disorders (Springer Japan), pp. 85–95.10.1007/978-4-431-68479-4_7Search in Google Scholar

Mowla, S.J., Pareek, S., Farhadi, H.F., Petrecca, K., Fawcett, J.P., Seidah, N.G., Morris, S.J., Sossin, W.S., and Murphy, R.A. (1999). Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J. Neurosci. 19, 2069–2080.10.1523/JNEUROSCI.19-06-02069.1999Search in Google Scholar PubMed PubMed Central

Mufson, E.J., Conner, J.M., and Kordower, J.H. (1995). Nerve growth factor in Alzheimer’s disease: defective retrograde transport to nucleus basalis. Neuroreport 6, 1063–1066.10.1097/00001756-199505090-00028Search in Google Scholar PubMed

Mufson, E.J., Li, J.M., Sobreviela, T., and Kordower, J.H. (1996). Decreased trkA gene expression within basal forebrain neurons in Alzheimer’s disease. Neuroreport 8, 25–29.10.1097/00001756-199612200-00006Search in Google Scholar PubMed

Niewiadomska, G., Mietelska-Porowska, A., and Mazurkiewicz, M. (2011). The cholinergic system, nerve growth factor and the cytoskeleton. Behavioural Brain Res. 221, 515–526.10.1016/j.bbr.2010.02.024Search in Google Scholar PubMed

Nilsson, O., Leanza, G., Rosenblad, C., Lappi, D., Wiley, R., and Björklund, A. (1992). Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. Neuroreport 3, 1005–1008.10.1097/00001756-199211000-00015Search in Google Scholar PubMed

Niu, C. and Yip, H.K. (2011). Neuroprotective signaling mechanisms of telomerase are regulated by brain-derived neurotrophic factor in rat spinal cord motor neurons. J. Neuropathol. Exp. 70, 634–652.10.1097/NEN.0b013e318222b97bSearch in Google Scholar PubMed

Olson, L. (1993). NGF and the treatment of Alzheimer’s disease. Exp. Neurol. 124, 5–15.10.1006/exnr.1993.1167Search in Google Scholar PubMed

Olton, D. and Wenk, G. (1987). Dementia: animal models of the cognitive impairments produced by degeneration of the basal forebrain cholinergic system. In: Psychopharmacology: The third generation of progress (New York: Raven Press), pp. 941–953.Search in Google Scholar

Opendak, M. and Gould, E. (2015). Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn. Sci. 19, 151–161.10.1016/j.tics.2015.01.001Search in Google Scholar PubMed

Pan, Z. and Perez-Polo, R. (1993). Role of nerve growth factor in oxidanl homeostasis: glutathione metabolism. J. Neurochem. 61, 1713–1721.10.1111/j.1471-4159.1993.tb09808.xSearch in Google Scholar PubMed

Pan, W., Banks, W.A., Fasold, M.B., Bluth, J., and Kastin, A.J. (1998a). Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology 37, 1553–1561.10.1016/S0028-3908(98)00141-5Search in Google Scholar PubMed

Pan, W., Banks, W.A., and Kastin, A.J. (1998b). Permeability of the blood-brain barrier to neurotrophins. Brain Res. 788, 87–94.10.1016/S0006-8993(97)01525-4Search in Google Scholar PubMed

Paolicchi, F., Urquieta, B., Del Valle, L., and Bustos-Obregón, E. (1999). Biological activity of the seminal plasma of alpacas: stimulus for the production of LH by pituitary cells. Anim. Reprod. Sci. 54, 203–210.10.1016/S0378-4320(98)00150-XSearch in Google Scholar PubMed

Pardridge, W.M. (2002). Neurotrophins, neuroprotection and the blood-brain barrier. Curr. Opin. Investig. Drugs. 3, 1753–1757.Search in Google Scholar

Paredes, D., Granholm, A.-C., and Bickford, P.C. (2007). Effects of NGF and BDNF on baseline glutamate and dopamine release in the hippocampal formation of the adult rat. Brain Res. 1141, 56–64.10.1016/j.brainres.2007.01.018Search in Google Scholar PubMed PubMed Central

Patterson, J.C. and Childs, G.V. (1994). Nerve growth factor and its receptor in the anterior pituitary. Endocrinology 135, 1689–1696.10.1210/endo.135.4.7925133Search in Google Scholar PubMed

Paul, J., Gottmann, K., and Lessmann, V. (2001). NT-3 regulates BDNF-induced modulation of synaptic transmission in cultured hippocampal neurons. Neuroreport 12, 2635–2639.10.1097/00001756-200108280-00010Search in Google Scholar

Paves, H. and Saarma, M. (1997). Neurotrophins as in vitro growth cone guidance molecules for embryonic sensory neurons. Cell Tissue Res. 290, 285–297.10.1007/s004410050933Search in Google Scholar

Pelleymounter, M.A., Cullen, M.J., Baker, M.B., Gollub, M., and Wellman, C. (1996). The effects of intrahippocampal BDNF and NGF on spatial learning in aged Long Evans rats. Mol. Chem. Neuropathol 29, 211–226.10.1007/BF02815003Search in Google Scholar

Pesavento, E., Margotti, E., Righi, M., Cattaneo, A., and Domenici, L. (2000). Blocking the NGF-TrkA interaction rescues the developmental loss of LTP in the rat visual cortex: role of the cholinergic system. Neuron 25, 165–175.10.1016/S0896-6273(00)80880-6Search in Google Scholar

Pilakka-Kanthikeel, S., Atluri, V.S.R., Sagar, V., Saxena, S.K., and Nair, M. (2013). Targeted brain derived neurotropic factors (BDNF) delivery across the blood-brain barrier for neuro-protection using magnetic nano carriers: an in-vitro study. PLoS One, 8, e62241.10.1371/journal.pone.0062241Search in Google Scholar

Pitts, A.F. and Miller, M.W. (2000). Expression of nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 in the somatosensory cortex of the mature rat: coexpression with high-affinity neurotrophin receptors. J. Comp. Neurol. 418, 241–254.10.1002/(SICI)1096-9861(20000313)418:3<241::AID-CNE1>3.0.CO;2-MSearch in Google Scholar

Pregelj, P., Nedic, G., Paska, A.V., Zupanc, T., Nikolac, M., Balažic, J., Tomori, M., Komel, R., Seler, D.M., and Pivac, N. (2011). The association between brain-derived neurotrophic factor polymorphism (BDNF Val66Met) and suicide. J. Affect. Disord. 128, 287–290.10.1016/j.jad.2010.07.001Search in Google Scholar

Radak, Z., Toldy, A., Szabo, Z., Siamilis, S., Nyakas, C., Silye, G., Jakus, J., and Goto, S. (2006). The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain. Neurochem. Int. 49, 387–392.10.1016/j.neuint.2006.02.004Search in Google Scholar

Ramos, O.V., Torterolo, P., Lim, V., Chase, M.H., Sampogna, S., and Yamuy, J. (2011). The role of mesopontine NGF in sleep and wakefulness. Brain Res. 1413, 9–23.10.1016/j.brainres.2011.06.066Search in Google Scholar

Rasmussen, P., Brassard, P., Adser, H., Pedersen, M.V., Leick, L., Hart, E., Secher, N.H., Pedersen, B.K., and Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp. Physiol. 94, 1062–1069.10.1113/expphysiol.2009.048512Search in Google Scholar

Ratto, M.H., Huanca, W., Singh, J., and Adams, G.P. (2006). Comparison of the effect of ovulation-inducing factor (OIF) in the seminal plasma of llamas, alpacas, and bulls. Theriogenology 66, 1102–1106.10.1016/j.theriogenology.2006.02.050Search in Google Scholar PubMed

Ratto, M.H., Leduc, Y.A., Valderrama, X.P., van Straaten, K.E., Delbaere, L.T., Pierson, R.A., and Adams, G.P. (2012). The nerve of ovulation-inducing factor in semen. Proc. Natl. Acad. Sci. USA 109, 15042–15047.10.1073/pnas.1206273109Search in Google Scholar PubMed PubMed Central

Renton, J.P., Xu, N., Clark, J.J., and Hansen, M.R. (2010). Interaction of neurotrophin signaling with Bcl-2 localized to the mitochondria and endoplasmic reticulum on spiral ganglion neuron survival and neurite growth. J. Neurosci. Res. 88, 2239–2251.10.1002/jnr.22381Search in Google Scholar PubMed PubMed Central

Rhodes, M.E. and Rubin, R.T. (1999). Functional sex differences (sexual diergism’) of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. Brain Res. Rev. 30, 135–152.10.1016/S0165-0173(99)00011-9Search in Google Scholar PubMed

Sarter, M. and Bruno, J.P. (1997). Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res. Rev. 23, 28–46.10.1016/S0165-0173(96)00009-4Search in Google Scholar PubMed

Scaccianoce, S., Cigliana, G., Nicolai, R., Muscolo, L., Porcu, A., Navarra, D., Perez-Polo, J.R., and Angelucci, L. (1993). Hypothalamic involvement in the activation of the pituitary-adrenocortical axis by nerve growth factor. Neuroendocrinology 58, 202–209.10.1159/000126534Search in Google Scholar PubMed

Schinder, A.F. and Poo, M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends Neurosci. 23, 639–645.10.1016/S0166-2236(00)01672-6Search in Google Scholar

Schliebs, R. and Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. 113, 1625–1644.10.1007/s00702-006-0579-2Search in Google Scholar PubMed

Schuman, E.M. (1999). Neurotrophin regulation of synaptic transmission. Curr. Opin. Neurobiol. 9, 105–109.10.1016/S0959-4388(99)80013-0Search in Google Scholar

Sei, H., Saitoh, D., Yamamoto, K., Morita, K., and Morita, Y. (2000). Differential effect of short-term REM sleep deprivation on NGF and BDNF protein levels in the rat brain. Brain Res. 877, 387–390.10.1016/S0006-8993(00)02708-6Search in Google Scholar

Sei, H., Fujihara, H., Ueta, Y., Morita, K., Kitahama, K., and Morita, Y. (2003). Single eight-hour shift of light-dark cycle increases brain-derived neurotrophic factor protein levels in the rat hippocampus. Life Sci. 73, 53–59.10.1016/S0024-3205(03)00251-0Search in Google Scholar

Seo, H.G., Kim, D.-Y., Park, H.W., Lee, S.-U., and Park, S.-H. (2010). Early motor balance and coordination training increased synaptophysin in subcortical regions of the ischemic rat brain. J. Korean Med. Sci. 25, 1638–1645.10.3346/jkms.2010.25.11.1638Search in Google Scholar PubMed PubMed Central

Shi, S.-S., Shao, S., Yuan, B., Pan, F., and Li, Z.-L. (2010). Acute stress and chronic stress change brain-derived neurotrophic factor (BDNF) and tyrosine kinase-coupled receptor (TrkB) expression in both young and aged rat hippocampus. Yonsei Med. J. 51, 661–671.10.3349/ymj.2010.51.5.661Search in Google Scholar PubMed PubMed Central

Shimazu, K., Zhao, M., Sakata, K., Akbarian, S., Bates, B., Jaenisch, R., and Lu, B. (2006). NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis. Learn Memory 13, 307–315.10.1101/lm.76006Search in Google Scholar PubMed PubMed Central

Siegel, D.J. (2007). Mindfulness training and neural integration: differentiation of distinct streams of awareness and the cultivation of well-being. Soc. Cogn. Affect Neurosci. 2, 259–263.10.1093/scan/nsm034Search in Google Scholar

Silva, M.E., Smulders, J.P., Guerra, M., Valderrama, X.P., Letelier, C., Adams, G.P., and Ratto, M.H. (2011). Cetrorelix suppresses the preovulatory LH surge and ovulation induced by ovulation-inducing factor (OIF) present in llama seminal plasma. Reprod. Biol. Endocrinol. 9, 74.10.1186/1477-7827-9-74Search in Google Scholar PubMed PubMed Central

Sivilia, S., Paradisi, M., D’Intino, G., Fernandez, M., Pirondi, S., Lorenzini, L., and Calza, L. (2008). Skin homeostasis during inflammation: a role for nerve growth factor. Histol. Histopathol. 23, 1.Search in Google Scholar

Smith, P.G., Warn, J.D., Steinle, J.J., Krizsan-Agbas, D., and Hasan, W. (2002). Modulation of parasympathetic neuron phenotype and function by sympathetic innervation. Auton. Neurosci. 96, 33–42.10.1016/S1566-0702(01)00371-XSearch in Google Scholar

Sofroniew, M.V., Howe, C.L., and Mobley, W.C. (2001). Nerve growth factor signaling, neuroprotection, and neural repair. Annu. Rev. Neurosci. 24, 1217–1281.10.1146/annurev.neuro.24.1.1217Search in Google Scholar PubMed

Steiner, B., Wolf, S.A., and Kempermann, G. (2006). Adult neurogenesis and neurodegenerative disease. Regen. Med. 1, 15–28.10.2217/17460751.1.1.15Search in Google Scholar PubMed

Swanwick, C.C., Murthy, N.R., and Kapur, J. (2006). Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol Cell Neurosci. 31, 481–492.10.1016/j.mcn.2005.11.002Search in Google Scholar PubMed PubMed Central

Taglialatela, G. and Perez-Polo, J.R. (1994). Developmental profile of the hypothalamo-pituitary-adrenal axis response to nerve growth factor. Neurosci. Lett. 182, 231–234.10.1016/0304-3940(94)90804-4Search in Google Scholar PubMed

Takahashi, S. and Krueger, J.M. (1999). Nerve growth factor enhances sleep in rabbits. Neurosci. Lett. 264, 149–152.10.1016/S0304-3940(99)00196-2Search in Google Scholar PubMed

Takahashi, M., Shirakawa, O., Toyooka, K., Kitamura, N., Hashimoto, T., Maeda, K., Koizumi, S., Wakabayashi, K., Takahashi, H., Someya, T., et al. (2000). Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients. Mol. Psychiatry 5, 293–300.10.1038/sj.mp.4000718Search in Google Scholar PubMed

Teng, K.K. and Hempstead, B.L. (2004). Neurotrophins and their receptors: signaling trios in complex biological systems. Cell. Mol. Life Sci. 61, 35–48.10.1007/s00018-003-3099-3Search in Google Scholar PubMed

Teng, K.K., Felice, S., Kim, T., and Hempstead, B.L. (2010). Understanding proneurotrophin actions: Recent advances and challenges. Dev. Neurobiol. 70, 350–359.10.1002/dneu.20768Search in Google Scholar PubMed PubMed Central

Terry, A.V. and Buccafusco, J.J. (2003). The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharm. Exp. Ther. 306, 821–827.10.1124/jpet.102.041616Search in Google Scholar PubMed

Thorne, R.G. and Frey, W.H. (2012). Delivery of neurotrophic factors to the central nervous system. Clin. Pharmacokinet. 40, 907–946.10.2165/00003088-200140120-00003Search in Google Scholar PubMed

Tononi, G. and Cirelli, C. (2003). Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150.10.1016/j.brainresbull.2003.09.004Search in Google Scholar PubMed

Tononi, G. and Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49–62.10.1016/j.smrv.2005.05.002Search in Google Scholar PubMed

Tononi, G. and Cirelli, C. (2012). Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012.10.1155/2012/415250Search in Google Scholar PubMed PubMed Central

Tuszynski, M.H., Yang, J.H., Barba, D., U, H.S., Bakay, R.A., Pay, M.M., Masliah, E., Conner, J.M., Kobalka, P., and Roy, S. (2015). Nerve growth factor gene therapy: ativation of neuronal responses in Alzheimer disease. J. Am. Med. Assoc. Neurol. 72, 1139–1147.10.1001/jamaneurol.2015.1807Search in Google Scholar PubMed PubMed Central

Tyler, W.J., Alonso, M., Bramham, C.R., and Pozzo-Miller, L.D. (2002). From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning. Learn Memory 9, 224–237.10.1101/lm.51202Search in Google Scholar PubMed PubMed Central

Vaseghi, M. and Shivkumar, K. (2008). The role of the autonomic nervous system in sudden cardiac death. Prog. Cardiovasc. Dis. 50, 404.10.1016/j.pcad.2008.01.003Search in Google Scholar PubMed PubMed Central

Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590.10.1111/j.1460-9568.2004.03720.xSearch in Google Scholar PubMed

Vaynman, S., Ying, Z., Wu, A., and Gomez-Pinilla, F. (2006). Coupling energy metabolism with a mechanism to support brain-derived neurotrophic factor-mediated synaptic plasticity. Neuroscience 139, 1221–1234.10.1016/j.neuroscience.2006.01.062Search in Google Scholar PubMed

Vigers, A.J., Amin, D.S., Talley-Farnham, T., Gorski, J.A., Xu, B., and Jones, K.R. (2012). Sustained expression of brain-derived neurotrophic factor is required for maintenance of dendritic spines and normal behavior. Neuroscience 212, 1–18.10.1016/j.neuroscience.2012.03.031Search in Google Scholar PubMed PubMed Central

Wahlberg, L.U., Lind, G., Almqvist, P.M., Kusk, P., Tornøe, J., Juliusson, B., Söderman, M., Selldén, E., Seiger, Å., Eriksdotter-Jönhagen, M., et al. (2012). Targeted delivery of nerve growth factor via encapsulated cell biodelivery in Alzheimer disease: a technology platform for restorative neurosurgery. J. Neurosurg. 117, 340–347.10.3171/2012.2.JNS11714Search in Google Scholar PubMed

Walsh, J.J., Friedman, A.K., Sun, H., Heller, E.A., Ku, S.M., Juarez, B., Burnham, V.L., Mazei-Robison, M.S., Ferguson, D., Golden, S.A., et al. (2014). Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat. Neurosci. 17, 27–29.10.1038/nn.3591Search in Google Scholar PubMed PubMed Central

Wanigasekara, Y. and Keast, J.R. (2006). Nerve growth factor, glial cell line-derived neurotrophic factor and neurturin prevent semaphorin 3A-mediated growth cone collapse in adult sensory neurons. Neuroscience 142, 369–379.10.1016/j.neuroscience.2006.06.031Search in Google Scholar PubMed

Wardle, R.A. and Poo, M. (2003). Brain-derived neurotrophic factor modulation of GABAergic synapses by postsynaptic regulation of chloride transport. J. Neurosci. 23, 8722–8732.10.1523/JNEUROSCI.23-25-08722.2003Search in Google Scholar PubMed PubMed Central

Weissmiller, A.M. and Wu, C. (2012). Current advances in using neurotrophic factors to treat neurodegenerative disorders. Transl. Neurodegener. 1, 14.10.1186/2047-9158-1-14Search in Google Scholar PubMed PubMed Central

Wolf, C., Rothermel, A., and Robitzki, A.A. (2008). Neurturin, a member of the glial cell line-derived neurotrophic factor family, affects the development of acetylcholinesterase-positive cells in a three-dimensional model system of retinogenesis. J. Neurochem. 107, 96–104.10.1111/j.1471-4159.2008.05594.xSearch in Google Scholar PubMed

Wu, K., Meyer, E.M., Bennett, J.A., Meyers, C.A., Hughes, J.A., and King, M.A. (2005). AAV2/5-mediated NGF gene delivery protects septal cholinergic neurons following axotomy. Brain Res. 1061, 107–113.10.1016/j.brainres.2005.08.056Search in Google Scholar PubMed

Wyse, R.D., Dunbar, G.L., and Rossignol, J. (2014). Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int. J. Mol. Sci. 15, 1719–1745.10.3390/ijms15021719Search in Google Scholar PubMed PubMed Central

Xie, C.-W., Sayah, D., Chen, Q.-S., Wei, W.-Z., Smith, D., and Liu, X. (2000). Deficient long-term memory and long-lasting long-term potentiation in mice with a targeted deletion of neurotrophin-4 gene. Proc. Natl. Acad. Sci. USA 97, 8116–8121.10.1073/pnas.140204597Search in Google Scholar PubMed PubMed Central

Xiong, G.L. and Doraiswamy, P.M. (2009). Does meditation enhance cognition and brain plasticity? Ann. N. Y. Acad. Sci. 1172, 63–69.10.1196/annals.1393.002Search in Google Scholar PubMed

Xu, B., Gottschalk, W., Chow, A., Wilson, R.I., Schnell, E., Zang, K., Wang, D., Nicoll, R.A., Lu, B., and Reichardt, L.F. (2000). The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 20, 6888–6897.10.1523/JNEUROSCI.20-18-06888.2000Search in Google Scholar PubMed PubMed Central

Yan, Q., Matheson, C., Sun, J., Radeke, M.J., Feinstein, S.C., and Miller, J.A. (1994). Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with Trk receptor expression. Exp. Neurol. 127, 23–36.10.1006/exnr.1994.1076Search in Google Scholar PubMed

Yoon, S.O., Casaccia-Bonnefil, P., Carter, B., and Chao, M.V. (1998). Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosc. 18, 3273–3281.10.1523/JNEUROSCI.18-09-03273.1998Search in Google Scholar PubMed PubMed Central

Zhang, H.L., Singer, R.H., and Bassell, G.J. (1999). Neurotrophin regulation of β-actin mRNA and protein localization within growth cones. J. Cell Biol. 147, 59–70.10.1083/jcb.147.1.59Search in Google Scholar PubMed PubMed Central

Zhang, H.-T., Li, L.-Y., Zou, X.-L., Song, X.-B., Hu, Y.-L., Feng, Z.-T., and Wang, T.T.-H. (2007). Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult Rhesus monkey brains. J. Histochem. Cytochem. 55, 1–19.10.1369/jhc.6A6952.2006Search in Google Scholar PubMed

Zoladz, J., Pilc, A., Majerczak, J., Grandys, M., Zapart-Bukowska, J., and Duda, K. (2008). Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol. 59, 119–132.Search in Google Scholar

Received: 2016-05-12
Accepted: 2017-01-25
Published Online: 2017-03-27
Published in Print: 2017-07-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2016-0031/html
Scroll to top button