Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 12, 2022

Neural correlates of multisensory integration in the human brain: an ALE meta-analysis

  • Sebastian Scheliga EMAIL logo , Thilo Kellermann ORCID logo , Angelika Lampert , Roman Rolke , Marc Spehr and Ute Habel

Abstract

Previous fMRI research identified superior temporal sulcus as central integration area for audiovisual stimuli. However, less is known about a general multisensory integration network across senses. Therefore, we conducted activation likelihood estimation meta-analysis with multiple sensory modalities to identify a common brain network. We included 49 studies covering all Aristotelian senses i.e., auditory, visual, tactile, gustatory, and olfactory stimuli. Analysis revealed significant activation in bilateral superior temporal gyrus, middle temporal gyrus, thalamus, right insula, and left inferior frontal gyrus. We assume these regions to be part of a general multisensory integration network comprising different functional roles. Here, thalamus operate as first subcortical relay projecting sensory information to higher cortical integration centers in superior temporal gyrus/sulcus while conflict-processing brain regions as insula and inferior frontal gyrus facilitate integration of incongruent information. We additionally performed meta-analytic connectivity modelling and found each brain region showed co-activations within the identified multisensory integration network. Therefore, by including multiple sensory modalities in our meta-analysis the results may provide evidence for a common brain network that supports different functional roles for multisensory integration.


Corresponding author: Sebastian Scheliga, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany, E-mail:

Funding source: Deutsche ForschungsgemeinschaftBundesministerium für Bildung und Forschung (the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University)

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 368482240/GRK2416 (‘RTG 2416 MultiSenses – MultiScales’), by a grant from the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University (IZKF TN1-8/IA 532008, IZKF TN1-6/IA 53206) and the Brain Imaging Facility of the Interdisciplinary Centre for Clinical Research (IZKF) within the faculty of Medicine at the RWTH Aachen University, Germany. RR is supported by the BMBF consortium “Bio2Treat” (German Federal Ministry of Education and Research/Bundesministerium für Bildung und Forschung, BMBF, “Chronische Schmerzen – Innovative medizintechnische Lösungen zur Verbesserung von Prävention, Diagnostik und Therapie,” contract number 13GW0334B).

  1. Author contributions: Sebastian Scheliga: Designed the study, performed the literature search, performed data analysis, interpretation, and wrote the manuscript. Thilo Kellermann: Designed the study, revised the manuscript, and provided critical feedback. Angelika Lampert: Revised the manuscript and provided critical feedback. Roman Rolke: Revised the manuscript and provided critical feedback. Marc Spehr: Revised the manuscript and provided critical feedback. Ute Habel: Designed the study, revised the manuscript, and provided critical feedback. Sophie Schenk: Performed the literature search.

  2. Research funding: This study was funded by Deutsche ForschungsgemeinschaftBundesministerium für Bildung und Forschung (the Interdisciplinary Centre for Clinical Research within the faculty of Medicine at the RWTH Aachen University).

  3. Conflict of interest statement: The authors declare no conflicts of interest related to the present study. RR has received fees as a speaker or counseling services from the following companies: Aristo Pharma, Cannamedical Pharma, Grunenthal, Lilly & Company, Tilray Germany, Spectrum Therapeutics.

  4. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Alves, R.V., Ribas, G.C., Parraga, R.G., and de Oliveira, E. (2012). The occipital lobe convexity sulci and gyri. J. Neurosurg. 116: 1014–1023.10.3171/2012.1.JNS11978Search in Google Scholar PubMed

Aparicio, M., Peigneux, P., Charlier, B., Balériaux, D., Kavec, M., and Leybaert, J. (2017). The neural basis of speech perception through lipreading and manual cues: evidence from deaf native users of cued speech. Front. Psychol. 8: 426.10.3389/fpsyg.2017.00426Search in Google Scholar PubMed PubMed Central

Araneda, R., Renier, L., Ebner-Karestinos, D., Dricot, L., and De Volder, A.G. (2017). Hearing, feeling or seeing a beat recruits a supramodal network in the auditory dorsal stream. Eur. J. Neurosci. 45: 1439–1450.10.1111/ejn.13349Search in Google Scholar PubMed

Barrós-Loscertales, A., Ventura-Campos, N., Visser, M., Alsius, A., Pallier, C., Rivera, C.Á., and Soto-Faraco, S. (2013). Neural correlates of audiovisual speech processing in a second language. Brain Lang. 126: 253–262.10.1016/j.bandl.2013.05.009Search in Google Scholar PubMed

Beauchamp, M.S., Argall, B.D., Bodurka, J., Duyn, J.H., and Martin, A. (2004a). Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat. Neurosci. 7: 1190–1192.10.1038/nn1333Search in Google Scholar PubMed

Beauchamp, M.S., Lee, K.E., Argall, B.D., and Martin, A. (2004b). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron 41: 809–823.10.1016/S0896-6273(04)00070-4Search in Google Scholar

Beauchamp, M.S., Yasar, N.E., Frye, R.E., and Ro, T. (2008). Touch, sound and vision in human superior temporal sulcus. NeuroImage 41: 1011–1020.10.1016/j.neuroimage.2008.03.015Search in Google Scholar PubMed PubMed Central

Beauchamp, M.S., Nath, A.R., and Pasalar, S. (2010a). fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J. Neurosci. 30: 2414–2417.10.1523/JNEUROSCI.4865-09.2010Search in Google Scholar PubMed PubMed Central

Beauchamp, M.S., Pasalar, S., and Ro, T. (2010b). Neural substrates of reliability-weighted visual-tactile multisensory integration. Front. Syst. Neurosci. 4: 25.10.3389/fnsys.2010.00025Search in Google Scholar PubMed PubMed Central

Beauchamp, M.S. (2005). Statistical criteria in FMRI studies of multisensory integration. Neuroinformatics 3: 93–113.10.1385/NI:3:2:093Search in Google Scholar PubMed PubMed Central

Belardinelli, M.O., Sestieri, C., Di Matteo, R., Delogu, F., Del Gratta, C., Ferretti, A., Caulo, M., Tartaro, A., and Romani, G.L. (2004). Audio-visual crossmodal interactions in environmental perception: an fMRI investigation. Cogn. Process. 5: 167–174.10.1007/s10339-004-0024-0Search in Google Scholar

Bushara, K.O., Grafman, J., and Hallett, M. (2001). Neural correlates of auditory–visual stimulus onset asynchrony detection. J. Neurosci. 21: 300–304.10.1523/JNEUROSCI.21-01-00300.2001Search in Google Scholar PubMed PubMed Central

Callan, D.E., Jones, J.A., and Callan, A. (2014). Multisensory and modality specific processing of visual speech in different regions of the premotor cortex. Front. Psychol. 5: 389.10.3389/fpsyg.2014.00389Search in Google Scholar PubMed PubMed Central

Calvert, G.A. and Thesen, T. (2004). Multisensory integration: methodological approaches and emerging principles in the human brain. J. Physiol. Paris 98: 191–205.10.1016/j.jphysparis.2004.03.018Search in Google Scholar PubMed

Calvert, G.A., Campbell, R., and Brammer, M.J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr. Biol. 10: 649–657.10.1016/S0960-9822(00)00513-3Search in Google Scholar PubMed

Calvert, G.A., Hansen, P.C., Iversen, S.D., and Brammer, M.J. (2001). Detection of audio-visual integration sites in humans by application of electrophysiological criteria to the BOLD effect. NeuroImage 14: 427–438.10.1006/nimg.2001.0812Search in Google Scholar PubMed

Calvert, G.A. (2001). Crossmodal processing in the human brain: insights from functional neuroimaging studies. Cereb. Cortex 11: 1110–1123.10.1093/cercor/11.12.1110Search in Google Scholar PubMed

Cappe, C., Rouiller, E.M., and Barone, P. (2009). Multisensory anatomical pathways. Hear. Res. 258: 28–36.10.1016/j.heares.2009.04.017Search in Google Scholar PubMed

Cascio, C.J., Simon, D.M., Bryant, L.K., DiCarlo, G., and Wallace, M.T. (2020). Neurodevelopmental and neuropsychiatric disorders affecting multisensory processes. In: Multisensory perception. Academic Press, pp. 371–399.10.1016/B978-0-12-812492-5.00017-6Search in Google Scholar

Chang, L.J., Yarkoni, T., Khaw, M.W., and Sanfey, A.G. (2013). Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cereb. Cortex 23: 739–749.10.1093/cercor/bhs065Search in Google Scholar PubMed PubMed Central

Chechko, N., Kellermann, T., Schneider, F., and Habel, U. (2014). Conflict adaptation in emotional task underlies the amplification of target. Emotion 14: 321–330.10.1037/a0035208Search in Google Scholar PubMed

Chen, T., Michels, L., Supekar, K., Kochalka, J., Ryali, S., and Menon, V. (2015). Role of the anterior insular cortex in integrative causal signaling during multisensory auditory–visual attention. Eur. J. Neurosci. 41: 264–274.10.1111/ejn.12764Search in Google Scholar PubMed PubMed Central

Cohen, N.R., Cross, E.S., Tunik, E., Grafton, S.T., and Culham, J.C. (2009). Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: a TMS approach. Neuropsychologia 47: 1553–1562.10.1016/j.neuropsychologia.2008.12.034Search in Google Scholar PubMed

Courtiol, E. and Wilson, D.A. (2015). The olfactory thalamus: unanswered questions about the role of the mediodorsal thalamic nucleus in olfaction. Front. Neural Circuits 9: 49.10.3389/fncir.2015.00049Search in Google Scholar PubMed PubMed Central

Croy, I., Drechsler, E., Hamilton, P., Hummel, T., and Olausson, H. (2016). Olfactory modulation of affective touch processing—a neurophysiological investigation. NeuroImage 135: 135–141.10.1016/j.neuroimage.2016.04.046Search in Google Scholar PubMed

Davies-Thompson, J., Elli, G.V., Rezk, M., Benetti, S., van Ackeren, M., and Collignon, O. (2019). Hierarchical brain network for face and voice integration of emotion expression. Cereb. Cortex 29: 3590–3605.10.1093/cercor/bhy240Search in Google Scholar PubMed

De Araujo, I.E., Rolls, E.T., Kringelbach, M.L., McGlone, F., and Phillips, N. (2003). Taste-olfactory convergence, and the representation of the pleasantness of flavour, in the human brain. Eur. J. Neurosci. 18: 2059–2068.10.1046/j.1460-9568.2003.02915.xSearch in Google Scholar PubMed

Dhamala, M., Assisi, C.G., Jirsa, V.K., Steinberg, F.L., and Kelso, J.S. (2007). Multisensory integration for timing engages different brain networks. NeuroImage 34: 764–773.10.1016/j.neuroimage.2006.07.044Search in Google Scholar PubMed PubMed Central

Driver, J. and Noesselt, T. (2008). Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments. Neuron 57: 11–23.10.1016/j.neuron.2007.12.013Search in Google Scholar PubMed PubMed Central

Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., and Fox, P.T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30: 2907–2926.10.1002/hbm.20718Search in Google Scholar PubMed PubMed Central

Eickhoff, S.B., Bzdok, D., Laird, A.R., Roski, C., Caspers, S., Zilles, K., and Fox, P.T. (2011). Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage 57: 938–949.10.1016/j.neuroimage.2011.05.021Search in Google Scholar PubMed PubMed Central

Eickhoff, S.B., Bzdok, D., Laird, A.R., Kurth, F., and Fox, P.T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage 59: 2349–2361.10.1016/j.neuroimage.2011.09.017Search in Google Scholar PubMed PubMed Central

Erickson, L.C., Heeg, E., Rauschecker, J.P., and Turkeltaub, P.E. (2014a). An ALE meta-analysis on the audiovisual integration of speech signals. Hum. Brain Mapp. 35: 5587–5605.10.1002/hbm.22572Search in Google Scholar PubMed PubMed Central

Erickson, L.C., Zielinski, B.A., Zielinski, J.E., Liu, G., Turkeltaub, P.E., Leaver, A.M., and Rauschecker, J.P. (2014b). Distinct cortical locations for integration of audiovisual speech and the McGurk effect. Front. Psychol. 5: 534.10.3389/fpsyg.2014.00534Search in Google Scholar PubMed PubMed Central

Erickson, L.C., Rauschecker, J.P., and Turkeltaub, P.E. (2017). Meta-analytic connectivity modeling of the human superior temporal sulcus. Brain Struct. Funct. 222: 267–285.10.1007/s00429-016-1215-zSearch in Google Scholar PubMed PubMed Central

Ethofer, T., Bretscher, J., Wiethoff, S., Bisch, J., Schlipf, S., Wildgruber, D., and Kreifelts, B. (2013). Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. NeuroImage 76: 45–56.10.1016/j.neuroimage.2013.02.064Search in Google Scholar PubMed

Feldman, J.I., Dunham, K., Cassidy, M., Wallace, M.T., Liu, Y., and Woynaroski, T.G. (2018). Audiovisual multisensory integration in individuals with autism spectrum disorder: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 95: 220–234.10.1016/j.neubiorev.2018.09.020Search in Google Scholar PubMed PubMed Central

Fernández, L.M., Visser, M., Ventura-Campos, N., Ávila, C., and Soto-Faraco, S. (2015). Top-down attention regulates the neural expression of audiovisual integration. NeuroImage 119: 272–285.10.1016/j.neuroimage.2015.06.052Search in Google Scholar PubMed

Froesel, M., Cappe, C., and Hamed, S.B. (2021). A multisensory perspective onto primate pulvinar functions. Neurosci. Biobehav. Rev. 125: 231–243.10.1016/j.neubiorev.2021.02.043Search in Google Scholar PubMed

Gao, C., Weber, C.E., and Shinkareva, S.V. (2019). The brain basis of audiovisual affective processing: evidence from a coordinate-based activation likelihood estimation meta-analysis. Cortex 120: 66–77.10.1016/j.cortex.2019.05.016Search in Google Scholar PubMed

Gentile, G., Petkova, V.I., and Ehrsson, H.H. (2011). Integration of visual and tactile signals from the hand in the human brain: an FMRI study. J. Neurophysiol. 105: 910–922.10.1152/jn.00840.2010Search in Google Scholar PubMed PubMed Central

Gentile, G., Guterstam, A., Brozzoli, C., and Ehrsson, H.H. (2013). Disintegration of multisensory signals from the real hand reduces default limb self-attribution: an fMRI study. J. Neurosci. 33: 13350–13366.10.1523/JNEUROSCI.1363-13.2013Search in Google Scholar PubMed PubMed Central

Gentile, F., van Atteveldt, N., De Martino, F., and Goebel, R. (2017). Approaching the ground truth: revealing the functional organization of human multisensory STC using ultra-high field fMRI. J. Neurosci. 37: 10104–10113.10.1523/JNEUROSCI.0146-17.2017Search in Google Scholar PubMed PubMed Central

Ghazanfar, A.A. and Schroeder, C.E. (2006). Is neocortex essentially multisensory? Trends Cogn. Sci. 10: 278–285.10.1016/j.tics.2006.04.008Search in Google Scholar PubMed

Gottfried, J.A. and Dolan, R.J. (2003). The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron 39: 375–386.10.1016/S0896-6273(03)00392-1Search in Google Scholar

Green, A., Straube, B., Weis, S., Jansen, A., Willmes, K., Konrad, K., and Kircher, T. (2009). Neural integration of iconic and unrelated coverbal gestures: a functional MRI study. Hum. Brain Mapp. 30: 3309–3324.10.1002/hbm.20753Search in Google Scholar PubMed PubMed Central

Grieve, K.L., Acuña, C., and Cudeiro, J. (2000). The primate pulvinar nuclei: vision and action. Trends Neurosci. 23: 35–39.10.1016/S0166-2236(99)01482-4Search in Google Scholar

Guterstam, A., Gentile, G., and Ehrsson, H.H. (2013). The invisible hand illusion: multisensory integration leads to the embodiment of a discrete volume of empty space. J. Cogn. Neurosci. 25: 1078–1099.10.1162/jocn_a_00393Search in Google Scholar PubMed

Hein, G., Doehrmann, O., Müller, N.G., Kaiser, J., Muckli, L., and Naumer, M.J. (2007). Object familiarity and semantic congruency modulate responses in cortical audiovisual integration areas. J. Neurosci. 27: 7881–7887.10.1523/JNEUROSCI.1740-07.2007Search in Google Scholar PubMed PubMed Central

Hickok, G. and Poeppel, D. (2007). The cortical organization of speech processing. Nat. Rev. Neurosci. 8: 393–402.10.1038/nrn2113Search in Google Scholar PubMed

Hölig, C., Föcker, J., Best, A., Röder, B., and Büchel, C. (2017). Activation in the angular gyrus and in the pSTS is modulated by face primes during voice recognition. Hum. Brain Mapp. 38: 2553–2565.10.1002/hbm.23540Search in Google Scholar PubMed PubMed Central

Holle, H., Obleser, J., Rueschemeyer, S.A., and Gunter, T.C. (2010). Integration of iconic gestures and speech in left superior temporal areas boosts speech comprehension under adverse listening conditions. NeuroImage 49: 875–884.10.1016/j.neuroimage.2009.08.058Search in Google Scholar PubMed

Hwang, J. and Romanski, L.M. (2015). Prefrontal neuronal responses during audiovisual mnemonic processing. J. Neurosci. 35: 960–971.10.1523/JNEUROSCI.1328-14.2015Search in Google Scholar PubMed PubMed Central

Hwang, K., Bertolero, M.A., Liu, W.B., and D’Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. J. Neurosci. 37: 5594–5607.10.1523/JNEUROSCI.0067-17.2017Search in Google Scholar PubMed PubMed Central

Iannetti, G.D. and Mouraux, A. (2010). From the neuromatrix to the pain matrix (and back). Exp. Brain Res. 205: 1–12.10.1007/s00221-010-2340-1Search in Google Scholar PubMed

James, T.W. and Stevenson, R.A. (2012). The use of fMRI to assess multisensory integration. In: Murray, M.M. and Wallace, M.T. (Eds.), The neural bases of multisensory processes. Boca Raton, FL: CRC Press/Taylor and Francis.10.1201/9781439812174-11Search in Google Scholar

Jessen, S. and Kotz, S.A. (2015). Affect differentially modulates brain activation in uni-and multisensory body-voice perception. Neuropsychologia 66: 134–143.10.1016/j.neuropsychologia.2014.10.038Search in Google Scholar PubMed

Jiang, F., Beauchamp, M.S., and Fine, I. (2015). Re-examining overlap between tactile and visual motion responses within hMT+ and STS. NeuroImage 119: 187–196.10.1016/j.neuroimage.2015.06.056Search in Google Scholar PubMed PubMed Central

Joassin, F., Maurage, P., and Campanella, S. (2011a). The neural network sustaining the crossmodal processing of human gender from faces and voices: an fMRI study. NeuroImage 54: 1654–1661.10.1016/j.neuroimage.2010.08.073Search in Google Scholar PubMed

Joassin, F., Pesenti, M., Maurage, P., Verreckt, E., Bruyer, R., and Campanella, S. (2011b). Cross-modal interactions between human faces and voices involved in person recognition. Cortex 47: 367–376.10.1016/j.cortex.2010.03.003Search in Google Scholar PubMed

Jola, C., McAleer, P., Grosbras, M.H., Love, S.A., Morison, G., and Pollick, F.E. (2013). Uni-and multisensory brain areas are synchronised across spectators when watching unedited dance recordings. i-Percept 4: 265–284.10.1068/i0536Search in Google Scholar PubMed PubMed Central

Kassuba, T., Menz, M.M., Röder, B., and Siebner, H.R. (2013). Multisensory interactions between auditory and haptic object recognition. Cereb. Cortex 23: 1097–1107.10.1093/cercor/bhs076Search in Google Scholar PubMed

Kastner, S., O’Connor, D. H., Fukui, M., Fehd, H., Herwig, U., and Pinsk, M. (2004). Functional imaging of the human lateral geniculate nucleus and pulvinar. J. Neurophysiol. 91: 438–448.10.1152/jn.00553.2003Search in Google Scholar PubMed

Kay, L.M. and Sherman, S.M. (2007). An argument for an olfactory thalamus. Trends Neurosci. 30: 47–53.10.1016/j.tins.2006.11.007Search in Google Scholar PubMed

Kim, S., Stevenson, R.A., and James, T.W. (2012). Visuo-haptic neuronal convergence demonstrated with an inversely effective pattern of BOLD activation. J. Cogn. Neurosci. 24: 830–842.10.1162/jocn_a_00176Search in Google Scholar PubMed

Kircher, T., Straube, B., Leube, D., Weis, S., Sachs, O., Willmes, K., Konrad, K., and Green, A. (2009). Neural interaction of speech and gesture: differential activations of metaphoric co-verbal gestures. Neuropsychologia 47: 169–179.10.1016/j.neuropsychologia.2008.08.009Search in Google Scholar PubMed

Klasen, M., Kenworthy, C.A., Mathiak, K.A., Kircher, T.T., and Mathiak, K. (2011). Supramodal representation of emotions. J. Neurosci. 31: 13635–13643.10.1523/JNEUROSCI.2833-11.2011Search in Google Scholar PubMed PubMed Central

Kohn, N., Eickhoff, S.B., Scheller, M., Laird, A.R., Fox, P.T., and Habel, U. (2014). Neural network of cognitive emotion regulation—an ALE meta-analysis and MACM analysis. NeuroImage 87: 345–355.10.1016/j.neuroimage.2013.11.001Search in Google Scholar PubMed PubMed Central

Kreifelts, B., Ethofer, T., Grodd, W., Erb, M., and Wildgruber, D. (2007). Audiovisual integration of emotional signals in voice and face: an event-related fMRI study. NeuroImage 37: 1445–1456.10.1016/j.neuroimage.2007.06.020Search in Google Scholar PubMed

Kreifelts, B., Ethofer, T., Huberle, E., Grodd, W., and Wildgruber, D. (2010). Association of trait emotional intelligence and individual fMRI-activation patterns during the perception of social signals from voice and face. Hum. Brain Mapp. 31: 979–991.10.1002/hbm.20913Search in Google Scholar PubMed PubMed Central

Kronschnabel, J., Brem, S., Maurer, U., and Brandeis, D. (2014). The level of audiovisual print–speech integration deficits in dyslexia. Neuropsychologia 62: 245–261.10.1016/j.neuropsychologia.2014.07.024Search in Google Scholar PubMed

Laird, A.R., Eickhoff, S.B., Kurth, F., Fox, P.M., Uecker, A.M., Turner, J.A., Robinson, J.L., Lancaster, J.L., and Fox, P.T. (2009). ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front. Neuroinform. 3: 23.10.3389/neuro.11.023.2009Search in Google Scholar PubMed PubMed Central

Laird, A.R., Eickhoff, S.B., Fox, P.M., Uecker, A.M., Ray, K.L., Saenz, J.J., McKay, D.R., Bzdok, D., Laird, R.W., Robinson, J.L., et al.. (2011). The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res. Notes 4: 1–9.10.1186/1756-0500-4-349Search in Google Scholar PubMed PubMed Central

Lancaster, J.L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., Mazziotta, J.C., and Fox, P.T. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum. Brain Mapp. 28: 1194–1205.10.1002/hbm.20345Search in Google Scholar PubMed PubMed Central

Lancaster, J.L., Laird, A.R., Eickhoff, S.B., Martinez, M.J., Fox, P.M., and Fox, P.T. (2012). Automated regional behavioral analysis for human brain images. Front. Neuroinform. 6: 23.10.3389/fninf.2012.00023Search in Google Scholar PubMed PubMed Central

Laurienti, P.J., Perrault, T.J., Stanford, T.R., Wallace, M.T., and Stein, B.E. (2005). On the use of superadditivity as a metric for characterizing multisensory integration in functional neuroimaging studies. Exp. Brain Res. 166: 289–297.10.1007/s00221-005-2370-2Search in Google Scholar PubMed

Lee, H. and Noppeney, U. (2011). Physical and perceptual factors shape the neural mechanisms that integrate audiovisual signals in speech comprehension. J. Neurosci. 31: 11338–11350.10.1523/JNEUROSCI.6510-10.2011Search in Google Scholar PubMed PubMed Central

Li, Y., Long, J., Huang, B., Yu, T., Wu, W., Liu, Y., Liang, C., and Sun, P. (2015). Crossmodal integration enhances neural representation of task-relevant features in audiovisual face perception. Cereb. Cortex 25: 384–395.10.1093/cercor/bht228Search in Google Scholar PubMed

Li, Y., Wang, F., Huang, B., Yang, W., Yu, T., and Talsma, D. (2016). The modulatory effect of semantic familiarity on the audiovisual integration of face-name pairs. Hum. Brain Mapp. 37: 4333–4348.10.1002/hbm.23312Search in Google Scholar PubMed PubMed Central

Li, Q., Xi, Y., Zhang, M., Liu, L., and Tang, X. (2019). Distinct mechanism of audiovisual integration with informative and uninformative sound in a visual detection task: a DCM study. Front. Comput. Neurosci. 13: 59.10.3389/fncom.2019.00059Search in Google Scholar PubMed PubMed Central

Li, Y., Seger, C., Chen, Q., and Mo, L. (2020). Left Inferior frontal Gyrus integrates multisensory information in category learning. Cereb. Cortex 30: 4410–4423.10.1093/cercor/bhaa029Search in Google Scholar PubMed

Liakakis, G., Nickel, J., and Seitz, R. (2011). Diversity of the inferior frontal gyrus—a meta-analysis of neuroimaging studies. Behav. Brain Res. 225: 341–347.10.1016/j.bbr.2011.06.022Search in Google Scholar PubMed

Lötsch, J., Hähner, A., Gossrau, G., Hummel, C., Walter, C., Ultsch, A., and Hummel, T. (2016). Smell of pain: intersection of nociception and olfaction. Pain 157: 2152–2157.10.1097/j.pain.0000000000000599Search in Google Scholar PubMed

Love, S.A., Pollick, F.E., and Latinus, M. (2011). Cerebral correlates and statistical criteria of cross-modal face and voice integration. Seeing Perceiving 24: 351–367.10.1163/187847511X584452Search in Google Scholar PubMed

Man, K., Damasio, A., Meyer, K., and Kaplan, J.T. (2015). Convergent and invariant object representations for sight, sound, and touch. Hum. Brain Mapp. 36: 3629–3640.10.1002/hbm.22867Search in Google Scholar PubMed PubMed Central

Marstaller, L. and Burianová, H. (2014). The multisensory perception of co-speech gestures–A review and meta-analysis of neuroimaging studies. J. Neurolinguistics 30: 69–77.10.1016/j.jneuroling.2014.04.003Search in Google Scholar

Maurage, P., Joassin, F., Pesenti, M., Grandin, C., Heeren, A., Philippot, P., and De Timary, P. (2013). The neural network sustaining crossmodal integration is impaired in alcohol-dependence: an fMRI study. Cortex 49: 1610–1626.10.1016/j.cortex.2012.04.012Search in Google Scholar PubMed

McCormick, K., Lacey, S., Stilla, R., Nygaard, L.C., and Sathian, K. (2018). Neural basis of the crossmodal correspondence between auditory pitch and visuospatial elevation. Neuropsychologia 112: 19–30.10.1016/j.neuropsychologia.2018.02.029Search in Google Scholar PubMed PubMed Central

McNorgan, C. and Booth, J.R. (2015). Skill dependent audiovisual integration in the fusiform induces repetition suppression. Brain Lang. 141: 110–123.10.1016/j.bandl.2014.12.002Search in Google Scholar PubMed PubMed Central

Meredith, M.A. and Stein, B.E. (1983). Interactions among converging sensory inputs in the superior colliculus. Science 221: 389–391.10.1126/science.6867718Search in Google Scholar PubMed

Miller, L.M. and D’esposito, M. (2005). Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J. Neurosci. 25: 5884–5893.10.1523/JNEUROSCI.0896-05.2005Search in Google Scholar PubMed PubMed Central

Milner, A.D. (2017). How do the two visual streams interact with each other? Exp. Brain Res. 235: 1297–1308.10.1007/s00221-017-4917-4Search in Google Scholar PubMed PubMed Central

Moris-Fernandez, L., Macaluso, E., and Soto-Faraco, S. (2017). Audiovisual integration as conflict resolution: the conflict of the McGurk illusion. Hum. Brain Mapp. 38: 5691–5705.10.1002/hbm.23758Search in Google Scholar PubMed PubMed Central

Müller, V.I., Cieslik, E.C., Laird, A.R., Fox, P.T., Radua, J., Mataix-Cols, D., Tench, C.R., Yarkoni, T., Nichols, T.E., Turkeltaub, P.E., et al.. (2018). Ten simple rules for neuroimaging meta-analysis. Neurosci. Biobehav. Rev. 84: 151–161.10.1016/j.neubiorev.2017.11.012Search in Google Scholar PubMed PubMed Central

Nath, A.R. and Beauchamp, M.S. (2011). Dynamic changes in superior temporal sulcus connectivity during perception of noisy audiovisual speech. J. Neurosci. 31: 1704–1714.10.1523/JNEUROSCI.4853-10.2011Search in Google Scholar PubMed PubMed Central

Noesselt, T., Tyll, S., Boehler, C.N., Budinger, E., Heinze, H.J., and Driver, J. (2010). Sound-induced enhancement of low-intensity vision: multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. J. Neurosci. 30: 13609–13623.10.1523/JNEUROSCI.4524-09.2010Search in Google Scholar PubMed PubMed Central

O’Connor, D.H., Fukui, M.M., Pinsk, M.A., and Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nat. Neurosci. 5: 1203–1209.10.1038/nn957Search in Google Scholar PubMed

Oh, A., Duerden, E.G., and Pang, E.W. (2014). The role of the insula in speech and language processing. Brain Lang. 135: 96–103.10.1016/j.bandl.2014.06.003Search in Google Scholar PubMed PubMed Central

Ozker, M., Yoshor, D., and Beauchamp, M.S. (2018). Converging evidence from electrocorticography and BOLD fMRI for a sharp functional boundary in superior temporal gyrus related to multisensory speech processing. Front. Hum. Neurosci. 12: 141.10.3389/fnhum.2018.00141Search in Google Scholar PubMed PubMed Central

Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., et al.. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst. Rev. 10: 1–11.10.1186/s13643-021-01626-4Search in Google Scholar

Park, J.Y., Gu, B.M., Kang, D.H., Shin, Y.W., Choi, C.H., Lee, J.M., and Kwon, J.S. (2010). Integration of cross-modal emotional information in the human brain: an fMRI study. Cortex 46: 161–169.10.1016/j.cortex.2008.06.008Search in Google Scholar PubMed

Peelle, J.E. and Sommers, M.S. (2015). Prediction and constraint in audiovisual speech perception. Cortex 68: 169–181.10.1016/j.cortex.2015.03.006Search in Google Scholar PubMed PubMed Central

Petrini, K., Crabbe, F., Sheridan, C., and Pollick, F.E. (2011). The music of your emotions: neural substrates involved in detection of emotional correspondence between auditory and visual music actions. PLoS One 6: e19165.10.1371/journal.pone.0019165Search in Google Scholar PubMed PubMed Central

Pishnamazi, M., Nojaba, Y., Ganjgahi, H., Amousoltani, A., and Oghabian, M.A. (2016). Neural correlates of audiotactile phonetic processing in early-blind readers: an fMRI study. Exp. Brain Res. 234: 1263–1277.10.1007/s00221-015-4515-2Search in Google Scholar PubMed

Plakke, B., Hwang, J., and Romanski, L.M. (2015). Inactivation of primate prefrontal cortex impairs auditory and audiovisual working memory. J. Neurosci. 35: 9666–9675.10.1523/JNEUROSCI.1218-15.2015Search in Google Scholar PubMed PubMed Central

Porada, D.K., Regenbogen, C., Seubert, J., Freiherr, J., and Lundström, J.N. (2019). Multisensory enhancement of odor object processing in primary olfactory cortex. Neuroscience 418: 254–265.10.1016/j.neuroscience.2019.08.040Search in Google Scholar PubMed

Porada, D.K., Regenbogen, C., Freiherr, J., Seubert, J., and Lundström, J.N. (2021). Trimodal processing of complex stimuli in inferior parietal cortex is modality independent. Cortex 139: 198–210.10.1016/j.cortex.2021.03.008Search in Google Scholar PubMed

Pourtois, G., de Gelder, B., Bol, A., and Crommelinck, M. (2005). Perception of facial expressions and voices and of their combination in the human brain. Cortex 41: 49–59.10.1016/S0010-9452(08)70177-1Search in Google Scholar

Rauschecker, J.P. and Scott, S.K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci. 12: 718–724.10.1038/nn.2331Search in Google Scholar PubMed PubMed Central

Regenbogen, C., Seubert, J., Johansson, E., Finkelmeyer, A., Andersson, P., and Lundström, J.N. (2018). The intraparietal sulcus governs multisensory integration of audiovisual information based on task difficulty. Hum. Brain Mapp. 39: 1313–1326.10.1002/hbm.23918Search in Google Scholar PubMed PubMed Central

Renier, L.A., Anurova, I., De Volder, A.G., Carlson, S., VanMeter, J., and Rauschecker, J.P. (2009). Multisensory integration of sounds and vibrotactile stimuli in processing streams for “what” and “where”. J. Neurosci. 29: 10950–10960.10.1523/JNEUROSCI.0910-09.2009Search in Google Scholar PubMed PubMed Central

Robins, D.L., Hunyadi, E., and Schultz, R.T. (2009). Superior temporal activation in response to dynamic audio-visual emotional cues. Brain Cogn 69: 269–278.10.1016/j.bandc.2008.08.007Search in Google Scholar PubMed PubMed Central

Scheef, L., Boecker, H., Daamen, M., Fehse, U., Landsberg, M.W., Granath, D.O., Mechling, H., and Effenberg, A.O. (2009). Multimodal motion processing in area V5/MT: evidence from an artificial class of audio-visual events. Brain Res. 1252: 94–104.10.1016/j.brainres.2008.10.067Search in Google Scholar PubMed

Scurry, A.N., Huber, E., Matera, C., and Jiang, F. (2020). Increased right posterior STS recruitment without enhanced directional-tuning during tactile motion processing in early deaf individuals. Front. Neurosci. 14: 864.10.3389/fnins.2020.00864Search in Google Scholar PubMed PubMed Central

Small, D.M. and Prescott, J. (2005). Odor/taste integration and the perception of flavor. Exp. Brain Res. 166: 345–357.10.1007/s00221-005-2376-9Search in Google Scholar PubMed

Small, D.M., Voss, J., Mak, Y.E., Simmons, K.B., Parrish, T., and Gitelman, D. (2004). Experience-dependent neural integration of taste and smell in the human brain. J. Neurophysiol. 92: 1892–1903.10.1152/jn.00050.2004Search in Google Scholar PubMed

Smith, S.M. and Nichols, T.E. (2009). Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage 44: 83–98.10.1016/j.neuroimage.2008.03.061Search in Google Scholar PubMed

Stanford, T.R. and Stein, B.E. (2007). Superadditivity in multisensory integration: putting the computation in context. Neuroreport 18: 787–792.10.1097/WNR.0b013e3280c1e315Search in Google Scholar PubMed

Stein, B.E. and Meredith, M.A. (1993). The merging of the senses. Cambridge, MA. The MIT Press.Search in Google Scholar

Stein, B.E. and Stanford, T.R. (2008). Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9: 255–266.10.1038/nrn2331Search in Google Scholar PubMed

Stein, B.E., Stanford, T.R., Ramachandran, R., Perrault, T.J., and Rowland, B.A. (2009). Challenges in quantifying multisensory integration: alternative criteria, models, and inverse effectiveness. Exp. Brain Res. 198: 113–126.10.1007/s00221-009-1880-8Search in Google Scholar PubMed PubMed Central

Stein, B.E., Stanford, T.R., and Rowland, B.A. (2014). Development of multisensory integration from the perspective of the individual neuron. Nat. Rev. Neurosci. 15: 520–535.10.1038/nrn3742Search in Google Scholar PubMed PubMed Central

Stevenson, R.A. and James, T.W. (2009). Audiovisual integration in human superior temporal sulcus: inverse effectiveness and the neural processing of speech and object recognition. NeuroImage 44: 1210–1223.10.1016/j.neuroimage.2008.09.034Search in Google Scholar PubMed

Stevenson, R.A., Geoghegan, M.L., and James, T.W. (2007). Superadditive BOLD activation in superior temporal sulcus with threshold nonspeech objects. Exp. Brain Res. 179: 85–95.10.1007/s00221-006-0770-6Search in Google Scholar PubMed

Stevenson, R.A., Kim, S., and James, T.W. (2009). An additive-factors design to disambiguate neuronal and areal convergence: measuring multisensory interactions between audio, visual, and haptic sensory streams using fMRI. Exp. Brain Res. 198: 183–194.10.1007/s00221-009-1783-8Search in Google Scholar PubMed

Stevenson, R.A., Ghose, D., Fister, J.K., Sarko, D.K., Altieri, N.A., Nidiffer, A.R., Kurela, L.R., Siemann, J.K., James, T.W., and Wallace, M.T. (2014). Identifying and quantifying multisensory integration: a tutorial review. Brain Topogr. 27: 707–730.10.1007/s10548-014-0365-7Search in Google Scholar PubMed

Stickel, S., Weismann, P., Kellermann, T., Regenbogen, C., Habel, U., Freiherr, J., and Chechko, N. (2019). Audio–visual and olfactory–visual integration in healthy participants and subjects with autism spectrum disorder. Hum. Brain Mapp. 40: 4470–4486.10.1002/hbm.24715Search in Google Scholar PubMed PubMed Central

Straube, B., Green, A., Bromberger, B., and Kircher, T. (2011). The differentiation of iconic and metaphoric gestures: common and unique integration processes. Hum. Brain Mapp. 32: 520–533.10.1002/hbm.21041Search in Google Scholar PubMed PubMed Central

Talsma, D., Senkowski, D., Soto-Faraco, S., and Woldorff, M.G. (2010). The multifaceted interplay between attention and multisensory integration. Trends Cogn. Sci. 14: 400–410.10.1016/j.tics.2010.06.008Search in Google Scholar PubMed PubMed Central

Tham, W.W., Stevenson, R.J., and Miller, L.A. (2009). The functional role of the medio dorsal thalamic nucleus in olfaction. Brain Res. Rev. 62: 109–126.10.1016/j.brainresrev.2009.09.007Search in Google Scholar PubMed

Tops, M. and Boksem, M.A. (2011). A potential role of the inferior frontal gyrus and anterior insula in cognitive control, brain rhythms, and event-related potentials. Front. Psychol. 2: 330.10.3389/fpsyg.2011.00330Search in Google Scholar PubMed PubMed Central

Treille, A., Vilain, C., Hueber, T., Lamalle, L., and Sato, M. (2017). Inside speech: multisensory and modality-specific processing of tongue and lip speech actions. J. Cogn. Neurosci. 29: 448–466.10.1162/jocn_a_01057Search in Google Scholar PubMed

Turkeltaub, P.E., Eickhoff, S.B., Laird, A.R., Fox, M., Wiener, M., and Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Hum. Brain Mapp. 33: 1–13.10.1002/hbm.21186Search in Google Scholar PubMed PubMed Central

Tyll, S., Budinger, E., and Noesselt, T. (2011). Thalamic influences on multisensory integration. Commun. Integr. Biol. 4: 378–381.10.4161/cib.15222Search in Google Scholar

Tyll, S., Bonath, B., Schoenfeld, M.A., Heinze, H.J., Ohl, F.W., and Noesselt, T. (2013). Neural basis of multisensory looming signals. NeuroImage 65: 13–22.10.1016/j.neuroimage.2012.09.056Search in Google Scholar PubMed

Van Atteveldt, N., Formisano, E., Goebel, R., and Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron 43: 271–282.10.1016/j.neuron.2004.06.025Search in Google Scholar PubMed

Van Atteveldt, N.M., Formisano, E., Blomert, L., and Goebel, R. (2007). The effect of temporal asynchrony on the multisensory integration of letters and speech sounds. Cereb. Cortex 17: 962–974.10.1093/cercor/bhl007Search in Google Scholar PubMed

Van der Stoep, N., Van der Stigchel, S., Van Engelen, R.C., Biesbroek, J.M., and Nijboer, T.C. (2019). Impairments in multisensory integration after stroke. J. Cogn. Neurosci. 31: 885–899.10.1162/jocn_a_01389Search in Google Scholar PubMed

Watson, R., Latinus, M., Charest, I., Crabbe, F., and Belin, P. (2014a). People-selectivity, audiovisual integration and hetero modality in the superior temporal sulcus. Cortex 50: 125–136.10.1016/j.cortex.2013.07.011Search in Google Scholar PubMed PubMed Central

Watson, R., Latinus, M., Noguchi, T., Garrod, O., Crabbe, F., and Belin, P. (2014b). Crossmodal adaptation in right posterior superior temporal sulcus during face–voice emotional integration. J. Neurosci. 34: 6813–6821.10.1523/JNEUROSCI.4478-13.2014Search in Google Scholar PubMed PubMed Central

Weisberg, J., Hubbard, A.L., and Emmorey, K. (2017). Multimodal integration of spontaneously produced representational co-speech gestures: an fMRI study. Lang. Cogn. Neurosci. 32: 158–174.10.1080/23273798.2016.1245426Search in Google Scholar PubMed PubMed Central

Werner, S. and Noppeney, U. (2010a). Superadditive responses in superior temporal sulcus predict audiovisual benefits in object categorization. Cereb. Cortex 20: 1829–1842.10.1093/cercor/bhp248Search in Google Scholar PubMed

Werner, S. and Noppeney, U. (2010b). Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization. J. Neurosci. 30: 2662–2675.10.1523/JNEUROSCI.5091-09.2010Search in Google Scholar PubMed PubMed Central

Werner, S. and Noppeney, U. (2011). The contributions of transient and sustained response codes to audiovisual integration. Cereb. Cortex 21: 920–931.10.1093/cercor/bhq161Search in Google Scholar PubMed

Willems, R.M., Özyürek, A., and Hagoort, P. (2009). Differential roles for left inferior frontal and superior temporal cortex in multimodal integration of action and language. NeuroImage 47: 1992–2004.10.1016/j.neuroimage.2009.05.066Search in Google Scholar PubMed

Wright, T.M., Pelphrey, K.A., Allison, T., McKeown, M.J., and McCarthy, G. (2003). Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb. Cortex 13: 1034–1043.10.1093/cercor/13.10.1034Search in Google Scholar PubMed

Yalachkov, Y., Kaiser, J., Doehrmann, O., and Naumer, M.J. (2015). Enhanced visuo-haptic integration for the non-dominant hand. Brain Res. 1614: 75–85.10.1016/j.brainres.2015.04.020Search in Google Scholar PubMed

Yang, L., Yang, J., Nakamura, N., Wu, J., Ohno, S., Kurata, T., Abe, K., and Kanazawa, S. (2013). Difference of audiovisual integration between Alzheimer’s Disease patients and age-matched healthy controls: an fMRI study. ICME: 19–24.10.1109/ICCME.2013.6548204Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/revneuro-2022-0065).


Received: 2022-06-01
Accepted: 2022-07-22
Published Online: 2022-09-12
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2022-0065/html
Scroll to top button