Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 21, 2011

Homocysteine, type 2 diabetes mellitus, and cognitive performance: The Maine-Syracuse Study

  • Michael A. Robbins , Merrill F. Elias , Marc M. Budge , Suzanne L. Brennan and Penelope K. Elias

Abstract

Type 2 diabetes mellitus and higher total plasma homocysteine concentrations are each associated with an increased incidence of cardiovascular disease and with diminished cognitive performance. Relations between homocysteine concentrations and cardiovascular disease incidence are stronger in the presence of type 2 diabetes mellitus. Therefore, we hypothesized that relations between homocysteine concentrations and cognitive performance would be stronger in the presence of type 2 diabetes. We related homocysteine concentrations and cognitive performance on the Mini-Mental State Examination in 817 dementia- and stroke-free participants of the Maine-Syracuse Study, 90 of whom were classified with type 2 diabetes mellitus. Regardless of statistical adjustment for age, sex, gender, vitamin co-factors (folate, vitamin B6, vitamin B12), cardiovascular disease risk factors, and duration and type of treatment for type 2 diabetes mellitus, statistically significant inverse associations between homocysteine concentrations and cognitive performance were observed for diabetic individuals. The weaker inverse associations between homocysteine concentrations and cognitive performance obtained for non-diabetic individuals were not robust to statistical adjustment for some covariates. Interactions between homocysteine concentrations and type 2 diabetes mellitus are observed such that associations between homocysteine and cognitive performance are stronger in the presence of diabetes.


Corresponding author: Michael A. Robbins, PhD, Department of Psychology, 5742 Little Hall, University of Maine, Orono, ME 04469-5742, USA Phone: +1-207-581-2051, Fax: +1-207-581-6128,

References

1. Arnesen E, Refsum H, Bønaa KH, Ueland PM, Førde OH, Nordrehaug JE. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995; 24:704–9.10.1093/ije/24.4.704Search in Google Scholar PubMed

2. Bostom AG, Rosenberg IH, Silbershatz H, Jacques PF, Selhub J, D'Agostino RB, et al. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: the Framingham Study. Ann Intern Med 1999; 131:352–5.10.7326/0003-4819-131-5-199909070-00006Search in Google Scholar PubMed

3. Bots ML, Launer LJ, Lindemans J, Hoes AW, Hofman A, Witteman JC, et al. Homocysteine and short-term risk of myocardial infarction and stroke in the elderly: the Rotterdam Study. Arch Intern Med 1999; 159:38–44.10.1001/archinte.159.1.38Search in Google Scholar PubMed

4. Bots ML, Launer LJ, Lindemans J, Hofman A, Grobbee DE. Homocysteine, atherosclerosis and prevalent cardiovascular disease in the elderly: the Rotterdam Study. J Intern Med 1997; 242:339–47.10.1046/j.1365-2796.1997.00239.xSearch in Google Scholar PubMed

5. Ryan CM. Diabetes-associated cognitive dysfunction. In: Waldstein SR, Elias MF, editors. Neuropsychology of cardiovascular disease. Mahwah, NJ: Lawrence Erlbaum, 2001:61–82.Search in Google Scholar

6. Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJ, Jakobs C, Bouter LM, et al. Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non-insulin-dependent diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol 1998; 18:133–8.10.1161/01.ATV.18.1.133Search in Google Scholar

7. Becker A, Smulders YM, van Guldener C, Stehouwer CD. Homocysteine as a risk factor in diabetes [abstract]. Clin Chem Lab Med 2005; 43:A11.Search in Google Scholar

8. Elias PK, Elias MF, D'Agostino RB, Cupples LA, Wilson PW, Silbershatz H, et al. NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care 1997; 20:1388–95.10.2337/diacare.20.9.1388Search in Google Scholar PubMed

9. Budge MM, de Jager C, Hogervorst E, Smith AD. Total plasma homocysteine, age, systolic blood pressure, and cognitive performance in older people. J Am Geriatr Soc 2002; 50:2014–8.10.1046/j.1532-5415.2002.50614.xSearch in Google Scholar PubMed

10. Elias MF, Sullivan LM, D'Agostino RB, Elias PK, Jacques PF, Selhub J, et al. Homocysteine and cognitive performance in the Framingham Offspring Study: age is important. Am J Epidemiol 2005 (Aug).10.1093/aje/kwi259Search in Google Scholar PubMed

11. Miller JW, Green R, Ramos MI, Allen LH, Mungas DM, Jagust WJ, et al. Homocysteine and cognitive function in the Sacramento Area Latino Study on Aging. Am J Clin Nutr 2003; 78:441–7.10.1093/ajcn/78.3.441Search in Google Scholar PubMed

12. Ravaglia G, Forti P, Maioli F, Muscari A, Sacchetti L, Arnone G, et al. Homocysteine and cognitive function in healthy elderly community dwellers in Italy. Am J Clin Nutr 2003; 77:668–73.10.1093/ajcn/77.3.668Search in Google Scholar PubMed

13. Teunissen CE, Blom AH, Van Boxtel MP, Bosma H, de Bruijn C, Jolles J, et al. Homocysteine: a marker for cognitive performance? A longitudinal follow-up study. J Nutr Health Aging 2003; 7:153–9.Search in Google Scholar

14. Dufouil C, Alperovitch A, Ducros V, Tzourio C. Homocysteine, white matter hyperintensities, and cognition in healthy elderly people. Ann Neurol 2003; 53:214–21.10.1002/ana.10440Search in Google Scholar

15. Elias MF, Robbins MA, Budge MM, Elias PK, Hermann BA, Dore GA. Studies of aging, hypertension and cognitive functioning: with contributions from the Maine-Syracuse Study. In: Mattson MP, series editor, Costa PT, Siegler IC, volume editors. Advances in cell aging and gerontology, vol. 14. Recent advances in psychology and aging. Amsterdam: Elsevier, 2004:89–131.Search in Google Scholar

16. Elias PK, Elias MF, Robbins MA, Budge MM. Blood pressure-related cognitive decline: does age make a difference? Hypertension 2004; 44:631–6.10.1161/01.HYP.0000145858.07252.99Search in Google Scholar

17. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology 1984; 34:939–44.10.1212/WNL.34.7.939Search in Google Scholar

18. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1977; 1:385–401.10.1177/014662167700100306Search in Google Scholar

19. Folstein M, Folstein SE, McHugh PR. Mini-mental state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12:189–98.10.1016/0022-3956(75)90026-6Search in Google Scholar

20. Shipchandler MT, Moore EG. Rapid, fully automated measurement of plasma homocysteine with the Abbott IMx analyser. Clin Chem 1995; 41:991–4.10.1093/clinchem/41.7.991Search in Google Scholar

21. Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc 1992; 40:922–35.10.1111/j.1532-5415.1992.tb01992.xSearch in Google Scholar PubMed

22. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004;27:S5–10.10.2337/diacare.27.2007.S5Search in Google Scholar

23. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:31–41.10.1159/000180580Search in Google Scholar PubMed

24. Leoncini G, Viazzi F, Parodi D, Vettoretti S, Ratto E, Ravera M, et al. Mild renal dysfunction and subclinical cardiovascular damage in primary hypertension. Hypertension 2003; 42:14–8.10.1161/01.HYP.0000075789.58883.73Search in Google Scholar PubMed

25. Stevens JP. Outliers and influential data points in regression analysis. Psych Bull 1984; 95:334–44.10.1037/0033-2909.95.2.334Search in Google Scholar

26. de Luis DA, Fernandez N, Arranz M, Aller R, Izaola O. Total homocysteine and cognitive deterioration in people with type 2 diabetes. Diabetes Res Clin Pract 2002; 55:185–90.10.1016/S0168-8227(01)00300-XSearch in Google Scholar

27. Smulders YM, Rakic M, Slaats EH, Treskes M, Sijbrands EJ, Odekerken DA, et al. Fasting and post-methionine homocysteine levels in NIDDM. Determinants and correlations with retinopathy, albuminuria, and cardiovascular disease. Diabetes Care 1999; 22:125–32.10.2337/diacare.22.1.125Search in Google Scholar

28. Selhub J, Bagley LC, Miller J, Rosenberg H. B vitamins, homocysteine, and neurocognitive function in the elderly. Am J Clin Nutr 2000; 71:614S–20S.10.1093/ajcn/71.2.614sSearch in Google Scholar

29. Smith AD. Homocysteine, B vitamins, and cognitive deficit in the elderly. Am J Clin Nutr 2002; 75:785–6.10.1093/ajcn/75.5.785Search in Google Scholar

30. Jacques PF, Selhub J, Bostom AG, Wilson PW, Rosenberg IH. The effect of folic acid fortification on plasma folate and total homocysteine concentrations. N Engl J Med 1999; 340:1449–54.10.1056/NEJM199905133401901Search in Google Scholar

31. Wright CB, Lee H-S, Paik MC, Stabler SP, Allen RH, Sacco RL. Total homocysteine and cognition in a tri-ethnic cohort: the Northern Manhattan Study. Neurology 2004; 63:254–60.10.1212/01.WNL.0000129986.19019.5DSearch in Google Scholar

32. Kruman II, Culmsee C, Chan SL, Kruman Y, Guo Z, Penix L, et al. Homocysteine elicits a DNA damage response in neurons that promotes apoptosis and hypersensitivity to excitotoxicity. J Neurosci 2000; 20:6920–6.10.1523/JNEUROSCI.20-18-06920.2000Search in Google Scholar

33. Lipton SA, Kim WK, Choi YB, Kumar S, D'Emilia DM, Rayudu PV, et al. Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 1997; 94:5923–8.10.1073/pnas.94.11.5923Search in Google Scholar

34. Parsons RB, Waring RH, Ramsden DB, Williams AC. In vitro effect of the cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology 1998; 19:599–603.Search in Google Scholar

35. Schlaich MP, John S, Jacobi J, Lackner KJ, Schmieder RE. Mildly elevated homocysteine concentrations impair endothelium dependent vasodilation in hypercholesterolemic patients. Atherosclerosis 2000; 153:383–9.10.1016/S0021-9150(00)00412-3Search in Google Scholar

36. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998; 55:1449–55.10.1001/archneur.55.11.1449Search in Google Scholar

37. McCaddon A, Davies G, Hudson P, Tandy S, Cattell H. Total serum homocysteine in senile dementia of the Alzheimer type. Int J Geriatr Psychiatry 1998; 13:235–9.10.1002/(SICI)1099-1166(199804)13:4<235::AID-GPS761>3.0.CO;2-8Search in Google Scholar

38. Seshadri S, Beiser A, Selhub J, Jacques PF, Rosenberg IH, D'Agostino RB, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002; 346:476–83.10.1056/NEJMoa011613Search in Google Scholar

39. Malinow MR, Nieto FJ, Szklo M, Chambless LE, Bond G. Carotid artery intimal-medial wall thickening and plasma homocyst(e)ine in asymptomatic adults. The Atherosclerosis Risk in Communities Study. Circulation 1993; 87:1107–13.10.1161/01.CIR.87.4.1107Search in Google Scholar

40. Matsui T, Arai H, Yuzuriha T, Yao H, Miura M, Hashimoto S, et al. Elevated plasma homocysteine levels and risk of silent brain infarction in elderly people. Stroke 2001; 32:1116–9.10.1161/01.STR.32.5.1116Search in Google Scholar

41. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 1995; 346:1395–8.10.1016/S0140-6736(95)92407-8Search in Google Scholar

42. Selhub J, Jacques PF, Bostom AG, D'Agostino RB, Wilson PW, Belanger AJ, et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995; 332:286–91.10.1056/NEJM199502023320502Search in Google Scholar

43. den Heijer T, Vermeer SE, Clarke R, Oudkerk M, Koudstaal PJ, Hofman A, et al. Homocysteine and brain atrophy on MRI of non-demented elderly. Brain 2003; 126:170–5.10.1093/brain/awg006Search in Google Scholar

44. Sachdev P. Homocysteine, cerebrovascular disease and brain atrophy. J Neurol Sci 2004; 226:25–9.10.1016/j.jns.2004.09.006Search in Google Scholar

45. Lewerin C, Matousek M, Steen G, Johansson B, Steen B, Nilsson-Ehle H. Significant correlations of plasma homocysteine and serum methylmalonic acid with movement and cognitive performance in elderly subjects but no improvement from short-term vitamin therapy: a placebo-controlled randomized study. Am J Clin Nutr 2005; 81:1155–62.10.1093/ajcn/81.5.1155Search in Google Scholar

46. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. J Am Med Assoc 2004; 291:565–75.10.1001/jama.291.5.565Search in Google Scholar PubMed

47. van Asselt DZ, Pasman JW, van Lier HJ, Vingerhoets DM, Poels PJ, Kuin Y, et al. Cobalamin supplementation improves cognitive and cerebral function in older cobalamin-deficient persons. J Gerontol A Biol Sci Med Sci 2001; 56A:M775–9.10.1093/gerona/56.12.M775Search in Google Scholar

Published Online: 2011-9-21
Published in Print: 2005-10-1

©2005 by Walter de Gruyter Berlin New York

Downloaded on 17.5.2024 from https://www.degruyter.com/document/doi/10.1515/CCLM.2005.192/html
Scroll to top button