Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 1, 2013

Association of nucleotide-binding oligomerization domain-like receptor 3 inflammasome and adverse clinical outcomes in patients with idiopathic dilated cardiomyopathy

  • Beibei Luo , Fan Wang , Bo Li , Zhe Dong , Xiaoman Liu , Cheng Zhang and Fengshuang An EMAIL logo

Abstract

Background: The nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome is a multiprotein complex consisting of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and caspase-1. In peripheral blood mononuclear cells (PBMCs), NLRP3 can activate interleukin-1β (IL-1β), important in the chronic inflammatory process of idiopathic dilated cardiomyopathy (IDCM). Therefore, the NLRP3 inflammasome in PBMCs may be involved in the pathogenesis of IDCM. We evaluated the association of circulating levels of NLRP3 inflammasome and cardiac function in patients with IDCM and 6-month rehospitalization.

Methods: We enrolled 54 patients with IDCM and 20 healthy volunteers and analyzed left ventricle ejection fraction (LVEF), electrocardiography findings and circulating levels of NLRP3, ASC, caspase-1, IL-1β, N terminal-pro type B natriuretic peptide (NT-pro BNP) and blood values. Patients were followed up for 6 months.

Results: On admission and discharge, the circulating levels of NLRP3, ASC, caspase-1 and IL-1β were higher in IDCM patients than healthy controls (all p<0.05). In patients, NLRP3 mRNA level was associated with LVEF, NT-pro BNP level and monocyte count (all p<0.05). LVEF at admission and mRNA levels of NLRP3 and IL-1β at discharge were independent risk factors of 6-month rehospitalization for patients. High NLRP3 mRNA level was associated with cumulative rehospitalization rate (p<0.05).

Conclusions: NLRP3 level in PBMCs may be associated with cardiac function and rehospitalization in IDCM patients.


Corresponding author: Fengshuang An, Shandong University Qilu Hospital, Jinan, No. 107, Wen Hua Xi Road, Jinan, Shandong, 250012, P.R. China, Phone: +86-531-82169257, Fax: +86-531-86169356

Conflict of interest statement

Authors’ conflict of interest disclosure: The authors stated that there are no conflicts of interest regarding the publication of this article.

Research funding: None declared.

Employment or leadership: None declared.

Honorarium: None declared.

References

1. Roura S, Bayes-Genis A. Vascular dysfunction in idiopathic dilated cardiomyopathy. Nat Rev Cardiol 2009;6:590–8.10.1038/nrcardio.2009.130Search in Google Scholar

2. Hogye M, Mandi Y, Csanady M, Sepp R, Buzas K. Comparison of circulating levels of interleukin-6 and tumor necrosis factor-alpha in hypertrophic cardiomyopathy and in idiopathic dilated cardiomyopathy. Am J Cardiol 2004;94:249–51.10.1016/j.amjcard.2004.03.078Search in Google Scholar

3. Kaya Z, Goser S, Buss SJ, Leuschner F, Ottl R, Li J, etal. Identification of cardiac troponin I sequence motifs leading to heart failure by induction of myocardial inflammation and fibrosis. Circulation 2008;118:2063–72.10.1161/CIRCULATIONAHA.108.788711Search in Google Scholar

4. Luppi P, Rudert WA, Zanone MM, Stassi G, Trucco G, Finegold D, etal. Idiopathic dilated cardiomyopathy: a superantigen-driven autoimmune disease. Circulation 1998;98:777–85.10.1161/01.CIR.98.8.777Search in Google Scholar

5. Fu M. Autoimmunity in idiopathic dilated cardiomyopathy: from patients to molecules and back to patients. Int J Cardiol 2006;112:1.10.1016/j.ijcard.2006.07.002Search in Google Scholar

6. Gianni D, Li A, Tesco G, McKay KM, Moore J, Raygor K, etal. Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy. Circulation 2010;121:1216–26.10.1161/CIRCULATIONAHA.109.879510Search in Google Scholar

7. Fujioka S, Kitaura Y, Ukimura A, Deguchi H, Kawamura K, Isomura T, etal. Evaluation of viral infection in the myocardium of patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2000;36:1920–6.10.1016/S0735-1097(00)00955-4Search in Google Scholar

8. Sampietro T, Neglia D, Bionda A, Dal Pino B, Bigazzi F, Puntoni M, etal. Inflammatory markers and serum lipids in idiopathic dilated cardiomyopathy. Am J Cardiol 2005;96:1718–20.10.1016/j.amjcard.2005.07.093Search in Google Scholar PubMed

9. Vanderheyden M, Paulus WJ, Voss M, Knuefermann P, Sivasubramanian N, Mann D, etal. Myocardial cytokine gene expression is higher in aortic stenosis than in idiopathic dilated cardiomyopathy. Heart 2005;91:926–31.10.1136/hrt.2004.035733Search in Google Scholar PubMed PubMed Central

10. Luppi P, Licata A, Haluszczak C, Rudert WA, Trucco G, McGowan FX Jr., etal. Analysis of TCR Vbeta repertoire and cytokine gene expression in patients with idiopathic dilated cardiomyopathy. J Autoimmun 2001;16:3–13.10.1006/jaut.2000.0462Search in Google Scholar PubMed

11. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002;10:417–26.10.1016/S1097-2765(02)00599-3Search in Google Scholar

12. Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 2003;4: 95–104.10.1038/nrm1019Search in Google Scholar PubMed

13. Schroder K, Tschopp J. The inflammasomes. Cell 2010;140: 821–32.10.1016/j.cell.2010.01.040Search in Google Scholar PubMed

14. Guarda G, So A. Regulation of inflammasome activity. Immunology 2010;130:329–36.10.1111/j.1365-2567.2010.03283.xSearch in Google Scholar PubMed PubMed Central

15. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 2011;54:133–44.10.1002/hep.24341Search in Google Scholar PubMed PubMed Central

16. Artlett CM, Sassi-Gaha S, Rieger JL, Boesteanu AC, Feghali-Bostwick CA, Katsikis PD. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum 2011;63:3563–74.10.1002/art.30568Search in Google Scholar PubMed

17. Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G, Curtis MA, etal. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol 2009;157:415–22.10.1111/j.1365-2249.2009.03972.xSearch in Google Scholar PubMed PubMed Central

18. Lichtnekert J, Kulkarni OP, Mulay SR, Rupanagudi KV, Ryu M, Allam R, etal. Anti-GBM glomerulonephritis involves IL-1 but is independent of NLRP3/ASC inflammasome-mediated activation of caspase-1. PLoS One 2011;6:e26778.10.1371/journal.pone.0026778Search in Google Scholar PubMed PubMed Central

19. Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, etal. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol 2011;187:434–40.10.4049/jimmunol.1003143Search in Google Scholar PubMed

20. Fahy RJ, Exline MC, Gavrilin MA, Bhatt NY, Besecker BY, Sarkar A, etal. Inflammasome mRNA expression in human monocytes during early septic shock. Am J Respir Crit Care Med 2008;177:983–8.10.1164/rccm.200703-418OCSearch in Google Scholar PubMed PubMed Central

21. Pizzirani C, Falzoni S, Govoni M, La Corte R, Donadei S, Di Virgilio F, etal. Dysfunctional inflammasome in Schnitzler’s syndrome. Rheumatology (Oxford) 2009;48:1304–8.10.1093/rheumatology/kep222Search in Google Scholar PubMed

22. Vilaysane A, Chun J, Seamone ME, Wang W, Chin R, Hirota S, etal. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J Am Soc Nephrol 2010;21:1732–44.10.1681/ASN.2010020143Search in Google Scholar PubMed PubMed Central

23. Mishra BB, Moura-Alves P, Sonawane A, Hacohen N, Griffiths G, Moita LF, etal. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol 2010;12:1046–63.10.1111/j.1462-5822.2010.01450.xSearch in Google Scholar PubMed

24. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, etal. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011;123:594–604.10.1161/CIRCULATIONAHA.110.982777Search in Google Scholar PubMed

25. Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, etal. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA 2011;108:19725–30.10.1073/pnas.1108586108Search in Google Scholar PubMed PubMed Central

26. Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, etal. The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through IL-1β. Exp Physiol 2012. [Epub ahead of print]. 30 July 2012. DOI: 10.1113/Expphysiol.2012.068338.10.1113/expphysiol.2012.068338Search in Google Scholar PubMed

27. Bryant C, Fitzgerald KA. Molecular mechanisms involved in inflammasome activation. Trends Cell Biol 2009;19:455–64.10.1016/j.tcb.2009.06.002Search in Google Scholar PubMed

28. De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 2011;32:373–9.10.1016/j.it.2011.05.004Search in Google Scholar PubMed PubMed Central

29. Hoegen T, Tremel N, Klein M, Angele B, Wagner H, Kirschning C, etal. The NLRP3 inflammasome contributes to brain injury in pneumococcal meningitis and is activated through ATP-dependent lysosomal cathepsin B release. J Immunol 2011;187:5440–51.10.4049/jimmunol.1100790Search in Google Scholar PubMed

30. Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S, Vanden Berghe T, etal. Role of IL-1alpha and the Nlrp3/caspase-1/IL-1beta axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur Respir J 2011;38:1019–28.10.1183/09031936.00158110Search in Google Scholar PubMed

31. Aviles RJ, Martin DO, Apperson-Hansen C, Houghtaling PL, Rautaharju P, Kronmal RA, etal. Inflammation as a risk factor for atrial fibrillation. Circulation 2003;108:3006–10.10.1161/01.CIR.0000103131.70301.4FSearch in Google Scholar PubMed

32. Dai S, Zhang S, Guo Y, Chu J, Hua W, Wang F. C-Reactive protein and atrial fibrillation in idiopathic dilated cardiomyopathy. Clin Cardiol 2009;32:E45–50.10.1002/clc.20430Search in Google Scholar PubMed PubMed Central

33. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation 2003;107:3133–40.10.1161/01.CIR.0000077913.60364.D2Search in Google Scholar PubMed

34. Rizzello V, Liuzzo G, Brugaletta S, Rebuzzi A, Biasucci LM, Crea F. Modulation of CD4(+)CD28null T lymphocytes by tumor necrosis factor-alpha blockade in patients with unstable angina. Circulation 2006;113:2272–7.10.1161/CIRCULATIONAHA.105.588533Search in Google Scholar PubMed

35. Van Tassell BW, Arena RA, Toldo S, Mezzaroma E, Azam T, Seropian IM, etal. Enhanced interleukin-1 activity contributes to exercise intolerance in patients with systolic heart failure. PLoS One 2012;7:e33438.10.1371/journal.pone.0033438Search in Google Scholar PubMed PubMed Central

36. Lappe JM, Pelfrey CM, Tang WH. Recent insights into the role of autoimmunity in idiopathic dilated cardiomyopathy. J Card Fail 2008;14:521–30.10.1016/j.cardfail.2008.02.016Search in Google Scholar PubMed PubMed Central

37. Hirasawa Y, Nakagomi A, Kobayashi Y, Katoh T, Mizuno K. Short-term amiodarone treatment attenuates the production of monocyte cytokines and chemokines by C-reactive protein and improves cardiac function in patients with idiopathic dilated cardiomyopathy and ventricular tachycardia. Circ J 2009;73:639–46.10.1253/circj.CJ-08-0794Search in Google Scholar

38. Gonzalez-Mejia ME, Doseff AI. Regulation of monocytes and macrophages cell fate. Front Biosci 2009;14:2413–31.10.2741/3387Search in Google Scholar PubMed

39. Ryan EJ, O’Farrelly C. The affect of chronic hepatitis C infection on dendritic cell function: a summary of the experimental evidence. J Viral Hepat 2011;18:601–7.10.1111/j.1365-2893.2011.01453.xSearch in Google Scholar PubMed

40. Niemi K, Teirila L, Lappalainen J, Rajamaki K, Baumann MH, Oorni K, etal. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol 2011;186:6119–28.10.4049/jimmunol.1002843Search in Google Scholar PubMed

41. Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011;117:3720–32.10.1182/blood-2010-07-273417Search in Google Scholar PubMed PubMed Central

42. Netea MG, Nold-Petry CA, Nold MF, Joosten LA, Opitz B, van der Meer JH, etal. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood 2009;113:2324–35.10.1182/blood-2008-03-146720Search in Google Scholar PubMed PubMed Central

43. Liu ZJ, Liu JL, Qu HP. Inflammasome and caspase-1 inhibition caused by Bcl-2 and Bcl-XL may influence cytokine responses of lipopolysaccharide-stimulated peripheral blood mononuclear cells from septic patients. Crit Care 2012;16:410.10.1186/cc11156Search in Google Scholar PubMed PubMed Central

44. Ichinohe T, Pang IK, Iwasaki A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol 2010;11:404–10.10.1038/ni.1861Search in Google Scholar PubMed PubMed Central

45. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, etal. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 2010;11:63–9.10.1038/ni.1824Search in Google Scholar PubMed

Received: 2012-9-12
Accepted: 2013-1-2
Published Online: 2013-02-01
Published in Print: 2013-07-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/cclm-2012-0600/html
Scroll to top button