Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 20, 2017

Human papillomavirus first and second generation vaccines–current status and future directions

  • Somayeh Pouyanfard and Martin Müller EMAIL logo
From the journal Biological Chemistry

Abstract

It has been more than 10 years that the first prophylactic papillomavirus vaccine became available, although distribution has been mainly limited to the more affluent countries. The first two vaccines have been a great success, hundreds of millions of women and a much smaller number of men have been vaccinated ever since. In a few countries with high vaccination coverage, in particular Australia but also parts of Great Britain and others, clinical impact of vaccination programs is already visible and there are indications for herd immunity as well. Vaccine efficacy is higher than originally estimated and the vaccines have an excellent safety profile. Gardasil9 is a second generation HPV virus-like particle vaccine that was licensed in 2015 and there are more to come in the near future. Currently, burning questions in respect to HPV vaccination are the duration of protection – especially in regard to cross-protection – reduction of the three-dose regimen and its impact on cross-protection; and duration of response, as well as protection against oropharyngeal HPV infections. Furthermore, researchers are seeking to overcome limitations of the VLP vaccines, namely low thermal stability, cost, invasive administration, limited coverage of non-vaccine HPV types, and lack of therapeutic efficacy. In this review we summarize the current status of licensed VLP vaccines and address questions related to second and third generation HPV vaccines.

Acknowledgement

This work was supported by a grant from Wilhelm-Sander-Stiftung to Somayeh Pouyanfard and Martin Müller (grant number 2013.136.2).

References

(2013). GAVI injects new life into HPV vaccine rollout. Lancet 381, 1688.10.1016/S0140-6736(13)61058-2Search in Google Scholar

Alving, C.R., Beck, Z., Matyas, G.R., and Rao, M. (2016). Liposomal adjuvants for human vaccines. Expert. Opin. Drug Deliv. 13, 807–816.10.1517/17425247.2016.1151871Search in Google Scholar PubMed

Angelo, M.G., David, M.P., Zima, J., Baril, L., Dubin, G., Arellano, F., and Struyf, F. (2014). Pooled analysis of large and long-term safety data from the human papillomavirus-16/18-AS04-adjuvanted vaccine clinical trial programme. Pharmacoepidemiol Drug Saf. 23, 466–479.10.1002/pds.3554Search in Google Scholar PubMed PubMed Central

Basu, P., Bhatla, N., Ngoma, T., and Sankaranarayanan, R. (2016). Less than 3 doses of the HPV vaccine – Review of efficacy against virological and disease end points. Hum. Vaccin. Immunother. 12, 1394–1402.10.1080/21645515.2016.1146429Search in Google Scholar PubMed PubMed Central

Beer, H., Hibbitts, S., Brophy, S., Rahman, M.A., Waller, J., and Paranjothy, S. (2014). Does the HPV vaccination programme have implications for cervical screening programmes in the UK? Vaccine 32, 1828–1833.10.1016/j.vaccine.2014.01.087Search in Google Scholar PubMed PubMed Central

Bian, T., Wang, Y., Lu, Z., Ye, Z., Zhao, L., Ren, J., Zhang, H., Ruan, L., and Tian, H. (2008). Human papillomavirus type 16 L1E7 chimeric capsomeres have prophylactic and therapeutic efficacy against papillomavirus in mice. Mol. Cancer Ther. 7, 1329–1335.10.1158/1535-7163.MCT-07-2015Search in Google Scholar PubMed

Bishop, B., Dasgupta, J., Klein, M., Garcea, R.L., Christensen, N.D., Zhao, R., and Chen, X.S. (2007). Crystal structures of four types of human papillomavirus L1 capsid proteins: understanding the specificity of neutralizing monoclonal antibodies. J. Biol. Chem. 282, 31803–31811.10.1074/jbc.M706380200Search in Google Scholar PubMed

Bissett, S.L., Godi, A., Fleury, M.J., Touze, A., Cocuzza, C., and Beddows, S. (2015). Naturally occurring capsid protein variants of human papillomavirus genotype 31 represent a single L1 serotype. J. Virol. 89, 7748–7757.10.1128/JVI.00842-15Search in Google Scholar PubMed PubMed Central

Bonanni, P., Boccalini, S., and Bechini, A. (2009). Efficacy, duration of immunity and cross protection after HPV vaccination: a review of the evidence. Vaccine 27(Suppl 1), A46–A53.10.1016/j.vaccine.2008.10.085Search in Google Scholar PubMed

Boxus, M., Fochesato, M., Miseur, A., Mertens, E., Dendouga, N., Brendle, S., Balogh, K.K., Christensen, N.D., and Giannini, S.L. (2016). Broad cross-protection is induced in preclinical models by a human papillomavirus vaccine composed of L1/L2 chimeric virus-like particles. J. Virol. 90, 6314–6325.10.1128/JVI.00449-16Search in Google Scholar PubMed PubMed Central

Brown, D.R., Kjaer, S.K., Sigurdsson, K., Iversen, O.E., Hernandez-Avila, M., Wheeler, C.M., Perez, G., Koutsky, L.A., Tay, E.H., Garcia, P., et al. (2009). The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in generally HPV-naive women aged 16–26 years. J. Infect. Dis. 199, 926–935.10.1086/597307Search in Google Scholar

Brown, D.R., Garland, S.M., Ferris, D.G., Joura, E., Steben, M., James, M., Radley, D., Vuocolo, S., Garner, E.I., Haupt, R.M., et al. (2011). The humoral response to Gardasil over four years as defined by total IgG and competitive Luminex immunoassay. Hum. Vaccin. 7, 230–238.10.4161/hv.7.2.13948Search in Google Scholar

Brown, D., Muller, M., Sehr, P., Pawlita, M., Seitz, H., Rubio, I., Antonello, J., Radley, D., Roberts, C., and Saah, A. (2014). Concordance assessment between a multiplexed competitive Luminex immunoassay, a multiplexed IgG Luminex immunoassay, and a pseudovirion-based neutralization assay for detection of human papillomaviruse types 16 and 18. Vaccine 32, 5880–5887.10.1016/j.vaccine.2014.08.004Search in Google Scholar

Burk, R.D., Chen, Z., Harari, A., Smith, B.C., Kocjan, B.J., Maver, P.J., and Poljak, M. (2011). Classification and nomenclature system for human Alphapapillomavirus variants: general features, nucleotide landmarks and assignment of HPV6 and HPV11 isolates to variant lineages. Acta Dermatovenerol. Alp. Pannonica Adriat. 20, 113–123.Search in Google Scholar

Campos, S.K. and Ozbun, M.A. (2009). Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. PLoS One 4, e4463.10.1371/journal.pone.0004463Search in Google Scholar

Canali, E., Bolchi, A., Spagnoli, G., Seitz, H., Rubio, I., Pertinhez, T.A., Muller, M., and Ottonello, S. (2014). A high-performance thioredoxin-based scaffold for peptide immunogen construction: proof-of-concept testing with a human papillomavirus epitope. Sci. Rep. 4, 4729.10.1038/srep04729Search in Google Scholar

Chandler, R.E., Juhlin, K., Fransson, J., Caster, O., Edwards, I.R., and Noren, G.N. (2017). Current safety concerns with human papillomavirus vaccine: a cluster analysis of reports in VigiBase®. Drug Saf. 40, 81–90.10.1007/s40264-016-0456-3Search in Google Scholar

Chaturvedi, A.K., Engels, E.A., Pfeiffer, R.M., Hernandez, B.Y., Xiao, W., Kim, E., Jiang, B., Goodman, M.T., Sibug-Saber, M., Cozen, W., et al. (2011). Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J. Clin. Oncol. 29, 4294–4301.10.1200/JCO.2011.36.4596Search in Google Scholar

Chen, X.S., Garcea, R.L., Goldberg, I., Casini, G., and Harrison, S.C. (2000). Structure of small virus-like particles assembled from the L1 protein of human papillomavirus 16. Mol. Cell 5, 557–567.10.1016/S1097-2765(00)80449-9Search in Google Scholar

Chen, X., Liu, H., Zhang, T., Liu, Y., Xie, X., Wang, Z., and Xu, X. (2014). A vaccine of L2 epitope repeats fused with a modified IgG1 Fc induced cross-neutralizing antibodies and protective immunity against divergent human papillomavirus types. PLoS One 9, e95448.10.1371/journal.pone.0095448Search in Google Scholar PubMed PubMed Central

Clendinen, C., Zhang, Y., Warburton, R.N., and Light, D.W. (2016). Manufacturing costs of HPV vaccines for developing countries. Vaccine 34, 5984–5989.10.1016/j.vaccine.2016.09.042Search in Google Scholar PubMed

Cogliano, V., Baan, R., Straif, K., Grosse, Y., Secretan, B., El Ghissassi, F., and WHO International Agency for Research on Cancer. (2005). Carcinogenicity of human papillomaviruses. Lancet Oncol. 6, 204.10.1016/S1470-2045(05)70086-3Search in Google Scholar

Cornet, I., Gheit, T., Franceschi, S., Vignat, J., Burk, R.D., Sylla, B.S., Tommasino, M., and Clifford, G.M. (2012). Human papillomavirus type 16 genetic variants: phylogeny and classification based on E6 and LCR. J. Virol. 86, 6855–6861.10.1128/JVI.00483-12Search in Google Scholar

Daayana, S., Elkord, E., Winters, U., Pawlita, M., Roden, R., Stern, P.L., and Kitchener, H.C. (2010). Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br. J. Cancer 102, 1129–1136.10.1038/sj.bjc.6605611Search in Google Scholar

Day, P.M., Pang, Y.Y., Kines, R.C., Thompson, C.D., Lowy, D.R., and Schiller, J.T. (2012). A human papillomavirus (HPV) in vitro neutralization assay that recapitulates the in vitro process of infection provides a sensitive measure of HPV L2 infection-inhibiting antibodies. Clin. Vaccine Immunol. 19, 1075–1082.10.1128/CVI.00139-12Search in Google Scholar

Day, P.M. and Schelhaas, M. (2014). Concepts of papillomavirus entry into host cells. Curr. Opin. Virol. 4, 24–31.10.1016/j.coviro.2013.11.002Search in Google Scholar

de Jong, A., O’Neill, T., Khan, A.Y., Kwappenberg, K.M., Chisholm, S.E., Whittle, N.R., Dobson, J.A., Jack, L.C., St Clair Roberts, J.A., Offringa, R., et al. (2002). Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine 20, 3456–3464.10.1016/S0264-410X(02)00350-XSearch in Google Scholar

Derkay, C.S. and Wiatrak, B. (2008). Recurrent respiratory papillomatosis: a review. Laryngoscope 118, 1236–1247.10.1097/MLG.0b013e31816a7135Search in Google Scholar PubMed

Dintzis, H.M., Dintzis, R.Z., and Vogelstein, B. (1976). Molecular determinants of immunogenicity: the immunon model of immune response. Proc. Natl. Acad. Sci. USA 73, 3671–3675.10.1073/pnas.73.10.3671Search in Google Scholar PubMed PubMed Central

Einstein, M.H., Baron, M., Levin, M.J., Chatterjee, A., Edwards, R.P., Zepp, F., Carletti, I., Dessy, F.J., Trofa, A.F., Schuind, A., et al. (2009). Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum. Vaccin. 5, 705–719.10.4161/hv.5.10.9518Search in Google Scholar PubMed

Faust, H., Toft, L., Sehr, P., Muller, M., Bonde, J., Forslund, O., Ostergaard, L., Tolstrup, M., and Dillner, J. (2016). Human Papillomavirus neutralizing and cross-reactive antibodies induced in HIV-positive subjects after vaccination with quadrivalent and bivalent HPV vaccines. Vaccine 34, 1559–1565.10.1016/j.vaccine.2016.02.019Search in Google Scholar PubMed

Forinash, A.B., Yancey, A.M., Pitlick, J.M., and Myles, T.D. (2011). Safety of the HPV bivalent and quadrivalent vaccines during pregnancy. Ann. Pharmacother. 45, 258–262.10.1345/aph.1P396Search in Google Scholar PubMed

Gambhira, R., Jagu, S., Karanam, B., Gravitt, P.E., Culp, T.D., Christensen, N.D., and Roden, R.B. (2007a). Protection of rabbits against challenge with rabbit papillomaviruses by immunization with the N terminus of human papillomavirus type 16 minor capsid antigen L2. J. Virol. 81, 11585–11592.10.1128/JVI.01577-07Search in Google Scholar PubMed PubMed Central

Gambhira, R., Karanam, B., Jagu, S., Roberts, J.N., Buck, C.B., Bossis, I., Alphs, H., Culp, T., Christensen, N.D., and Roden, R.B. (2007b). A protective and broadly cross-neutralizing epitope of human papillomavirus L2. J. Virol. 81, 13927–13931.10.1128/JVI.00936-07Search in Google Scholar PubMed PubMed Central

Garland, S.M., Hernandez-Avila, M., Wheeler, C.M., Perez, G., Harper, D.M., Leodolter, S., Tang, G.W., Ferris, D.G., Steben, M., Bryan, J., et al. (2007). Quadrivalent vaccine against human papillomavirus to prevent anogenital diseases. N. Engl. J. Med. 356, 1928–1943.10.1056/NEJMoa061760Search in Google Scholar PubMed

Gasparini, R., Bonanni, P., Levi, M., Bechini, A., Boccalini, S., Tiscione, E., Amicizia, D., Lai, P.L., Sulaj, K., Patria, A.G., et al. (2011). Safety and tolerability of bivalent HPV vaccine: an Italian post-licensure study. Hum. Vaccin. 7(Suppl), 136–146.10.4161/hv.7.0.14576Search in Google Scholar PubMed

Gaukroger, J.M., Chandrachud, L.M., O’Neil, B.W., Grindlay, G.J., Knowles, G., and Campo, M.S. (1996). Vaccination of cattle with bovine papillomavirus type 4 L2 elicits the production of virus-neutralizing antibodies. J. Gen. Virol. 77, 1577–1583.10.1099/0022-1317-77-7-1577Search in Google Scholar PubMed

Gee, J., Naleway, A., Shui, I., Baggs, J., Yin, R., Li, R., Kulldorff, M., Lewis, E., Fireman, B., Daley, M.F., et al. (2011). Monitoring the safety of quadrivalent human papillomavirus vaccine: findings from the Vaccine Safety Datalink. Vaccine 29, 8279–8284.10.1016/j.vaccine.2011.08.106Search in Google Scholar PubMed

Gillison, M.L., Chaturvedi, A.K., Anderson, W.F., and Fakhry, C. (2015). Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J. Clin. Oncol. 33, 3235–3242.10.1200/JCO.2015.61.6995Search in Google Scholar PubMed PubMed Central

Godi, A., Bissett, S.L., Miller, E., and Beddows, S. (2015). Relationship between humoral immune responses against HPV16, HPV18, HPV31 and HPV45 in 12–15 year old girls receiving cervarix(R) or gardasil(R) vaccine. PLoS One 10, e0140926.10.1371/journal.pone.0140926Search in Google Scholar PubMed PubMed Central

Greenstone, H.L., Nieland, J.D., de Visser, K.E., De Bruijn, M.L., Kirnbauer, R., Roden, R.B., Lowy, D.R., Kast, W.M., and Schiller, J.T. (1998). Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc. Natl. Acad. Sci. USA 95, 1800–1805.10.1073/pnas.95.4.1800Search in Google Scholar PubMed PubMed Central

Group, F.I.S. (2007). Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N. Engl. J. Med. 356, 1915–1927.10.1056/NEJMoa061741Search in Google Scholar

Grun, N., Ahrlund-Richter, A., Franzen, J., Mirzaie, L., Marions, L., Ramqvist, T., and Dalianis, T. (2015). Oral human papillomavirus (HPV) prevalence in youth and cervical HPV prevalence in women attending a youth clinic in Sweden, a follow up-study 2013–2014 after gradual introduction of public HPV vaccination. Infect. Dis. (Lond.) 47, 57–61.10.3109/00365548.2014.964764Search in Google Scholar

Guo, T., Eisele, D.W., and Fakhry, C. (2016). The potential impact of prophylactic human papillomavirus vaccination on oropharyngeal cancer. Cancer 122, 2313–2323.10.1002/cncr.29992Search in Google Scholar

Hagensee, M.E., Yaegashi, N., and Galloway, D.A. (1993). Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J. Virol. 67, 315–322.10.1128/jvi.67.1.315-322.1993Search in Google Scholar

Handisurya, A., Schellenbacher, C., Haitel, A., Senger, T., and Kirnbauer, R. (2016). Human papillomavirus vaccination induces neutralising antibodies in oral mucosal fluids. Br. J. Cancer 114, 409–416.10.1038/bjc.2015.462Search in Google Scholar

Harari, A., Chen, Z., Rodriguez, A.C., Hildesheim, A., Porras, C., Herrero, R., Wacholder, S., Panagiotou, O.A., Befano, B., Burk, R.D., et al. (2016). Cross-protection of the bivalent human papillomavirus (HPV) vaccine against variants of genetically related high-risk HPV infections. J. Infect. Dis. 213, 939–947.10.1093/infdis/jiv519Search in Google Scholar

Harper, D.M., Franco, E.L., Wheeler, C.M., Moscicki, A.B., Romanowski, B., Roteli-Martins, C.M., Jenkins, D., Schuind, A., Costa Clemens, S.A., and Dubin, G. (2006). Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 367, 1247–1255.10.1016/S0140-6736(06)68439-0Search in Google Scholar

Hermann, J.S., Weckx, L.Y., Monteiro Nurmberger, J., Santos Junior, G.F., Campos Pignatari, A.C., and Nagata Pignatari, S.S. (2016). Effectiveness of the human papillomavirus (types 6, 11, 16, and 18) vaccine in the treatment of children with recurrent respiratory papillomatosis. Int. J. Pediatr. Otorhinolaryngol. 83, 94–98.10.1016/j.ijporl.2016.01.032Search in Google Scholar PubMed

Herrero, R., Castellsague, X., Pawlita, M., Lissowska, J., Kee, F., Balaram, P., Rajkumar, T., Sridhar, H., Rose, B., Pintos, J., et al. (2003). Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J. Natl. Cancer Inst. 95, 1772–1783.10.1093/jnci/djg107Search in Google Scholar PubMed

Hestbech, M.S., Lynge, E., Kragstrup, J., Siersma, V., Vazquez-Prada Baillet, M., and Brodersen, J. (2015). The impact of HPV vaccination on future cervical screening: a simulation study of two birth cohorts in Denmark. BMJ Open 5, e007921.10.1136/bmjopen-2015-007921Search in Google Scholar PubMed PubMed Central

Hildesheim, A., Herrero, R., Wacholder, S., Rodriguez, A.C., Solomon, D., Bratti, M.C., Schiller, J.T., Gonzalez, P., Dubin, G., Porras, C., et al. (2007). Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. J. Am. Med. Assoc. 298, 743–753.10.1001/jama.298.7.743Search in Google Scholar PubMed

Ho, L., Chan, S.Y., Burk, R.D., Das, B.C., Fujinaga, K., Icenogle, J.P., Kahn, T., Kiviat, N., Lancaster, W., Mavromara-Nazos, P., et al. (1993). The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J. Virol. 67, 6413–6423.10.1128/jvi.67.11.6413-6423.1993Search in Google Scholar PubMed PubMed Central

Howard, M. and Lytwyn, A. (2007). The HPV vaccine: an analysis of the FUTURE II study. Can. Fam. Physician. 53, 2157–2159.Search in Google Scholar

Hu, J., Brendle, S., Balogh, K., Bywaters, S., and Christensen, N. (2014). Antibody detection in tear samples as a surrogate to monitor host immunity against papillomavirus infections in vaccinated and naturally infected hosts. J. Gen. Virol. 95, 2030–2037.10.1099/vir.0.064154-0Search in Google Scholar PubMed PubMed Central

Huber, B., Schellenbacher, C., Jindra, C., Fink, D., Shafti-Keramat, S., and Kirnbauer, R. (2015). A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic α-7 human papillomavirus types. PLoS One 10, e0120152.10.1371/journal.pone.0120152Search in Google Scholar PubMed PubMed Central

Jagu, S., Karanam, B., Gambhira, R., Chivukula, S.V., Chaganti, R.J., Lowy, D.R., Schiller, J.T., and Roden, R.B. (2009). Concatenated multitype L2 fusion proteins as candidate prophylactic pan-human papillomavirus vaccines. J. Natl. Cancer Inst. 101, 782–792.10.1093/jnci/djp106Search in Google Scholar PubMed PubMed Central

Jagu, S., Kwak, K., Karanam, B., Huh, W.K., Damotharan, V., Chivukula, S.V., and Roden, R.B. (2013). Optimization of multimeric human papillomavirus L2 vaccines. PLoS One 8, e55538.10.1371/journal.pone.0055538Search in Google Scholar PubMed PubMed Central

Jagu, S., Karanam, B., Wang, J.W., Zayed, H., Weghofer, M., Brendle, S.A., Balogh, K.K., Tossi, K.P., Roden, R.B., and Christensen, N.D. (2015). Durable immunity to oncogenic human papillomaviruses elicited by adjuvanted recombinant Adeno-associated virus-like particle immunogen displaying L2 17–36 epitopes. Vaccine 33, 5553–5563.10.1016/j.vaccine.2015.09.005Search in Google Scholar PubMed PubMed Central

Johnson, K.M., Kines, R.C., Roberts, J.N., Lowy, D.R., Schiller, J.T., and Day, P.M. (2009). Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J. Virol. 83, 2067–2074.10.1128/JVI.02190-08Search in Google Scholar PubMed PubMed Central

Kalnin, K., Tibbitts, T., Yan, Y., Stegalkina, S., Shen, L., Costa, V., Sabharwal, R., Anderson, S.F., Day, P.M., Christensen, N., et al. (2014). Low doses of flagellin-L2 multimer vaccines protect against challenge with diverse papillomavirus genotypes. Vaccine 32, 3540–3547.10.1016/j.vaccine.2014.04.032Search in Google Scholar PubMed PubMed Central

Karanam, B., Gambhira, R., Peng, S., Jagu, S., Kim, D.J., Ketner, G.W., Stern, P.L., Adams, R.J., and Roden, R.B. (2009). Vaccination with HPV16 L2E6E7 fusion protein in GPI-0100 adjuvant elicits protective humoral and cell-mediated immunity. Vaccine 27, 1040–1049.10.1016/j.vaccine.2008.11.099Search in Google Scholar PubMed PubMed Central

Kaufmann, A.M., Nieland, J.D., Jochmus, I., Baur, S., Friese, K., Gabelsberger, J., Gieseking, F., Gissmann, L., Glasschroder, B., Grubert, T., et al. (2007). Vaccination trial with HPV16 L1E7 chimeric virus-like particles in women suffering from high grade cervical intraepithelial neoplasia (CIN 2/3). Int. J. Cancer 121, 2794–2800.10.1002/ijc.23022Search in Google Scholar

Kawana, K., Kawana, Y., Yoshikawa, H., Taketani, Y., Yoshiike, K., and Kanda, T. (2001). Nasal immunization of mice with peptide having a cross-neutralization epitope on minor capsid protein L2 of human papillomavirus type 16 elicit systemic and mucosal antibodies. Vaccine 19, 1496–1502.10.1016/S0264-410X(00)00367-4Search in Google Scholar

Kawana, K., Yasugi, T., Kanda, T., Kino, N., Oda, K., Okada, S., Kawana, Y., Nei, T., Takada, T., Toyoshima, S., et al. (2003). Safety and immunogenicity of a peptide containing the cross-neutralization epitope of HPV16 L2 administered nasally in healthy volunteers. Vaccine 21, 4256–4260.10.1016/S0264-410X(03)00454-7Search in Google Scholar

Kemp, T.J., Garcia-Pineres, A., Falk, R.T., Poncelet, S., Dessy, F., Giannini, S.L., Rodriguez, A.C., Porras, C., Herrero, R., Hildesheim, A., et al. (2008). Evaluation of systemic and mucosal anti-HPV16 and anti-HPV18 antibody responses from vaccinated women. Vaccine 26, 3608–3616.10.1016/j.vaccine.2008.04.074Search in Google Scholar

Kenny, J.J., Fischer, R.T., Lustig, A., Dintzis, H., Katsumata, M., Reed, J.C., and Longo, D.L. (1996). bcl-2 alters the antigen-driven selection of B cells in mukappa but not in mu-only Xid transgenic mice. J. Immunol. 157, 1054–1061.10.4049/jimmunol.157.3.1054Search in Google Scholar

Kirnbauer, R., Taub, J., Greenstone, H., Roden, R., Durst, M., Gissmann, L., Lowy, D.R., and Schiller, J.T. (1993). Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J. Virol. 67, 6929–6936.10.1128/jvi.67.12.6929-6936.1993Search in Google Scholar

Klein, N.P., Hansen, J., Chao, C., Velicer, C., Emery, M., Slezak, J., Lewis, N., Deosaransingh, K., Sy, L., Ackerson, B., et al. (2012). Safety of quadrivalent human papillomavirus vaccine administered routinely to females. Arch. Pediatr. Adolesc. Med. 166, 1140–1148.10.1001/archpediatrics.2012.1451Search in Google Scholar

Kondo, K., Ochi, H., Matsumoto, T., Yoshikawa, H., and Kanda, T. (2008). Modification of human papillomavirus-like particle vaccine by insertion of the cross-reactive L2-epitopes. J. Med. Virol. 80, 841–846.10.1002/jmv.21124Search in Google Scholar

Kreimer, A.R., Villa, A., Nyitray, A.G., Abrahamsen, M., Papenfuss, M., Smith, D., Hildesheim, A., Villa, L.L., Lazcano-Ponce, E., and Giuliano, A.R. (2011). The epidemiology of oral HPV infection among a multinational sample of healthy men. Cancer Epidemiol. Biomarkers Prev. 20, 172–182.10.1158/1055-9965.EPI-10-0682Search in Google Scholar

Lacey, C.J., Thompson, H.S., Monteiro, E.F., O’Neill, T., Davies, M.L., Holding, F.P., Fallon, R.E., and Roberts, J.S. (1999). Phase IIa safety and immunogenicity of a therapeutic vaccine, TA-GW, in persons with genital warts. J. Infect. Dis. 179, 612–618.10.1086/314616Search in Google Scholar

Lehtinen, M., Paavonen, J., Wheeler, C.M., Jaisamrarn, U., Garland, S.M., Castellsague, X., Skinner, S.R., Apter, D., Naud, P., Salmeron, J., et al. (2012). Overall efficacy of HPV-16/18 AS04-adjuvanted vaccine against grade 3 or greater cervical intraepithelial neoplasia: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 89–99.10.1016/S1470-2045(11)70286-8Search in Google Scholar

Li, L., Guo, Y., Li, Z., Zhou, Y., and Zeng, Y.I. (2016a). Protein transduction domain can enhance the humoral immunity and cross-protection of HPV16L2 peptide vaccines. Biomed. Rep. 4, 746–750.10.3892/br.2016.647Search in Google Scholar

Li, Z., Yan, X., Yu, H., Wang, D., Song, S., Li, Y., He, M., Hong, Q., Zheng, Q., Zhao, Q., et al. (2016b). The C-terminal arm of the human papillomavirus major capsid protein is immunogenic and involved in virus-host interaction. Structure 24, 874–885.10.1016/j.str.2016.04.008Search in Google Scholar

Liu, X.S., Xu, Y., Hardy, L., Khammanivong, V., Zhao, W., Fernando, G.J., Leggatt, G.R., and Frazer, I.H. (2003). IL-10 mediates suppression of the CD8 T cell IFN-gamma response to a novel viral epitope in a primed host. J. Immunol. 171, 4765–4772.10.4049/jimmunol.171.9.4765Search in Google Scholar

Lopez-Toledo, G., Schadlich, L., Alonso-Castro, A.J., Monroy-Garcia, A., Garcia-Rocha, R., Guido, M.C., Gissmann, L., and Garcia-Carranca, A. (2016). Immunization with human papillomavirus 16 L1+E2 chimeric capsomers elicits cellular immune response and antitumor activity in a mouse model. Viral. Immunol. 29, 276–287.10.1089/vim.2015.0080Search in Google Scholar

Macartney, K.K., Chiu, C., Georgousakis, M., and Brotherton, J.M. (2013). Safety of human papillomavirus vaccines: a review. Drug Saf. 36, 393–412.10.1007/s40264-013-0039-5Search in Google Scholar

Malagon, T., Drolet, M., Boily, M.C., Franco, E.L., Jit, M., Brisson, J., and Brisson, M. (2012). Cross-protective efficacy of two human papillomavirus vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 781–789.10.1016/S1473-3099(12)70187-1Search in Google Scholar

Mattil-Fritz, S., Scharner, D., Piuko, K., Thones, N., Gissmann, L., Muller, H., and Muller, M. (2008). Immunotherapy of equine sarcoid: dose-escalation trial for the use of chimeric papillomavirus-like particles. J. Gen. Virol. 89, 138–147.10.1099/vir.0.83266-0Search in Google Scholar PubMed

Matyas, G.R., Mayorov, A.V., Rice, K.C., Jacobson, A.E., Cheng, K., Iyer, M.R., Li, F., Beck, Z., Janda, K.D., and Alving, C.R. (2013). Liposomes containing monophosphoryl lipid A: a potent adjuvant system for inducing antibodies to heroin hapten analogs. Vaccine 31, 2804–2810.10.1016/j.vaccine.2013.04.027Search in Google Scholar PubMed PubMed Central

Mejia, A.F., Culp, T.D., Cladel, N.M., Balogh, K.K., Budgeon, L.R., Buck, C.B., and Christensen, N.D. (2006). Preclinical model to test human papillomavirus virus (HPV) capsid vaccines in vivo using infectious HPV/cottontail rabbit papillomavirus chimeric papillomavirus particles. J. Virol. 80, 12393–12397.10.1128/JVI.01583-06Search in Google Scholar PubMed PubMed Central

Moreira, E.D., Jr., Block, S.L., Ferris, D., Giuliano, A.R., Iversen, O.E., Joura, E.A., Kosalaraksa, P., Schilling, A., Van Damme, P., Bornstein, J., et al. (2016). Safety profile of the 9-valent HPV vaccine: a combined analysis of 7 phase III clinical trials. Pediatrics 138, e20154387.10.1542/peds.2015-4387Search in Google Scholar PubMed

Mudry, P., Vavrina, M., Mazanek, P., Machalova, M., Litzman, J., and Sterba, J. (2011). Recurrent laryngeal papillomatosis: successful treatment with human papillomavirus vaccination. Arch Dis Child 96, 476–477.10.1136/adc.2010.198184Search in Google Scholar

Muller, M., Zhou, J., Reed, T.D., Rittmuller, C., Burger, A., Gabelsberger, J., Braspenning, J., and Gissmann, L. (1997). Chimeric papillomavirus-like particles. Virology 234, 93–111.10.1006/viro.1997.8591Search in Google Scholar

Naleway, A.L., Crane, B., Smith, N., Daley, M.F., Donahue, J., Gee, J., Greene, S.K., Harrington, T., Jackson, L.A., Klein, N.P., et al. (2016). Absence of venous thromboembolism risk following quadrivalent human papillomavirus vaccination, Vaccine Safety Datalink, 2008–2011. Vaccine 34, 167–171.10.1016/j.vaccine.2015.10.006Search in Google Scholar

Nieto, K., Weghofer, M., Sehr, P., Ritter, M., Sedlmeier, S., Karanam, B., Seitz, H., Muller, M., Kellner, M., Horer, M., et al. (2012). Development of AAVLP(HPV16/31L2) particles as broadly protective HPV vaccine candidate. PLoS One 7, e39741.10.1371/journal.pone.0039741Search in Google Scholar

Normile, D. (2016). Critics assail paper claiming harm from cancer vaccine. Science 354, 1514–1515.10.1126/science.354.6319.1514Search in Google Scholar

Nunes, E.M., Sudenga, S.L., Gheit, T., Tommasino, M., Baggio, M.L., Ferreira, S., Galan, L., Silva, R.C., Pierce Campbell, C.M., Lazcano-Ponce, E., et al. (2016). Diversity of β-papillomavirus at anogenital and oral anatomic sites of men: the HIM study. Virology 495, 33–41.10.1016/j.virol.2016.04.031Search in Google Scholar

Ohlschlager, P., Osen, W., Dell, K., Faath, S., Garcea, R.L., Jochmus, I., Muller, M., Pawlita, M., Schafer, K., Sehr, P., et al. (2003). Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice. J. Virol. 77, 4635–4645.10.1128/JVI.77.8.4635-4645.2003Search in Google Scholar

Paavonen, J., Jenkins, D., Bosch, F.X., Naud, P., Salmeron, J., Wheeler, C.M., Chow, S.N., Apter, D.L., Kitchener, H.C., Castellsague, X., et al. (2007). Efficacy of a prophylactic adjuvanted bivalent L1 virus-like-particle vaccine against infection with human papillomavirus types 16 and 18 in young women: an interim analysis of a phase III double-blind, randomised controlled trial. Lancet 369, 2161–2170.10.1016/S0140-6736(07)60946-5Search in Google Scholar

Palmroth, J., Merikukka, M., Paavonen, J., Apter, D., Eriksson, T., Natunen, K., Dubin, G., and Lehtinen, M. (2012). Occurrence of vaccine and non-vaccine human papillomavirus types in adolescent Finnish females 4 years post-vaccination. Int. J. Cancer 131, 2832–2838.10.1002/ijc.27586Search in Google Scholar PubMed

Pastrana, D.V., Vass, W.C., Lowy, D.R., and Schiller, J.T. (2001). NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16. Virology 279, 361–369.10.1006/viro.2000.0702Search in Google Scholar PubMed

Pedersen, C., Petaja, T., Strauss, G., Rumke, H.C., Poder, A., Richardus, J.H., Spiessens, B., Descamps, D., Hardt, K., Lehtinen, M., et al. (2007). Immunization of early adolescent females with human papillomavirus type 16 and 18 L1 virus-like particle vaccine containing AS04 adjuvant. J. Adolesc. Health 40, 564–571.10.1016/j.jadohealth.2007.02.015Search in Google Scholar PubMed

Petaja, T., Pedersen, C., Poder, A., Strauss, G., Catteau, G., Thomas, F., Lehtinen, M., and Descamps, D. (2011). Long-term persistence of systemic and mucosal immune response to HPV-16/18 AS04-adjuvanted vaccine in preteen/adolescent girls and young women. Int. J. Cancer 129, 2147–2157.10.1002/ijc.25887Search in Google Scholar PubMed

Petrosky, E., Bocchini, J.A., Jr., Hariri, S., Chesson, H., Curtis, C.R., Saraiya, M., Unger, E.R., and Markowitz, L.E. (2015). Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. Morb. Mortal. Wkly. Rep. 64, 300–304.Search in Google Scholar

Pinto, L.A., Kemp, T.J., Torres, B.N., Isaacs-Soriano, K., Ingles, D., Abrahamsen, M., Pan, Y., Lazcano-Ponce, E., Salmeron, J., and Giuliano, A.R. (2016). Quadrivalent human papillomavirus (HPV) vaccine induces HPV-specific antibodies in the oral cavity: results From the mid-adult male vaccine trial. J. Infect. Dis. 214, 1276–1283.10.1093/infdis/jiw359Search in Google Scholar PubMed PubMed Central

Robbins, H.A., Waterboer, T., Porras, C., Kemp, T.J., Pawlita, M., Rodriguez, A.C., Wacholder, S., Gonzalez, P., Schiller, J.T., Lowy, D.R., et al. (2014). Immunogenicity assessment of HPV16/18 vaccine using the glutathione S-transferase L1 multiplex serology assay. Hum. Vaccin. Immunother. 10, 2965–2974.10.4161/21645515.2014.972811Search in Google Scholar PubMed PubMed Central

Rose, R.C., Reichman, R.C., and Bonnez, W. (1994). Human papillomavirus (HPV) type 11 recombinant virus-like particles induce the formation of neutralizing antibodies and detect HPV-specific antibodies in human sera. J. Gen. Virol. 75, 2075–2079.10.1099/0022-1317-75-8-2075Search in Google Scholar PubMed

Rudolf, M.P., Nieland, J.D., DaSilva, D.M., Velders, M.P., Muller, M., Greenstone, H.L., Schiller, J.T., and Kast, W.M. (1999). Induction of HPV16 capsid protein-specific human T cell responses by virus-like particles. Biol. Chem. 380, 335–340.10.1515/BC.1999.045Search in Google Scholar PubMed

Rudolf, M.P., Fausch, S.C., Da Silva, D.M., and Kast, W.M. (2001). Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J. Immunol. 166, 5917–5924.10.4049/jimmunol.166.10.5917Search in Google Scholar PubMed

Saboo, S., Tumban, E., Peabody, J., Wafula, D., Peabody, D.S., Chackerian, B., and Muttil, P. (2016). Optimized formulation of a thermostable spray-dried virus-like particle vaccine against human papillomavirus. Mol. Pharmaceut. 13, 1646–1655.10.1021/acs.molpharmaceut.6b00072Search in Google Scholar PubMed PubMed Central

Safaeian, M., Kemp, T.J., Pan, D.Y., Porras, C., Rodriguez, A.C., Schiffman, M., Cortes, B., Katki, H., Wacholder, S., Schiller, J.T., et al. (2013). Cross-protective vaccine efficacy of the bivalent HPV vaccine against HPV31 is associated with humoral immune responses: results from the Costa Rica Vaccine Trial. Hum. Vaccin. Immunother. 9, 1399–1406.10.4161/hv.24340Search in Google Scholar PubMed PubMed Central

Sapp, M. and Day, P.M. (2009). Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384, 400–409.10.1016/j.virol.2008.12.022Search in Google Scholar PubMed

Schadlich, L., Senger, T., Gerlach, B., Mucke, N., Klein, C., Bravo, I.G., Muller, M., and Gissmann, L. (2009a). Analysis of modified human papillomavirus type 16 L1 capsomeres: the ability to assemble into larger particles correlates with higher immunogenicity. J. Virol. 83, 7690–7705.10.1128/JVI.02588-08Search in Google Scholar

Schadlich, L., Senger, T., Kirschning, C.J., Muller, M., and Gissmann, L. (2009b). Refining HPV 16 L1 purification from E. coli: reducing endotoxin contaminations and their impact on immunogenicity. Vaccine 27, 1511–1522.10.1016/j.vaccine.2009.01.014Search in Google Scholar

Schafer, K., Muller, M., Faath, S., Henn, A., Osen, W., Zentgraf, H., Benner, A., Gissmann, L., and Jochmus, I. (1999). Immune response to human papillomavirus 16 L1E7 chimeric virus-like particles: induction of cytotoxic T cells and specific tumor protection. Int. J. Cancer 81, 881–888.10.1002/(SICI)1097-0215(19990611)81:6<881::AID-IJC8>3.0.CO;2-TSearch in Google Scholar

Schellenbacher, C., Roden, R., and Kirnbauer, R. (2009). Chimeric L1-L2 virus-like particles as potential broad-spectrum human papillomavirus vaccines. J. Virol. 83, 10085–10095.10.1128/JVI.01088-09Search in Google Scholar

Schellenbacher, C., Kwak, K., Fink, D., Shafti-Keramat, S., Huber, B., Jindra, C., Faust, H., Dillner, J., Roden, R.B., and Kirnbauer, R. (2013). Efficacy of RG1-VLP vaccination against infections with genital and cutaneous human papillomaviruses. J. Invest. Dermatol. 133, 2706–2713.10.1038/jid.2013.253Search in Google Scholar

Scherer, E.M., Smith, R.A., Gallego, D.F., Carter, J.J., Wipf, G.C., Hoyos, M., Stern, M., Thurston, T., Trinklein, N.D., Wald, A., et al. (2016). A single human papillomavirus vaccine dose improves B cell memory in previously infected subjects. EBioMedicine 10, 55–64.10.1016/j.ebiom.2016.06.042Search in Google Scholar

Scherpenisse, M., Schepp, R.M., Mollers, M., Mooij, S.H., Meijer, C.J., Berbers, G.A., and van der Klis, F.R. (2013). Comparison of different assays to assess human papillomavirus (HPV) type 16- and 18-specific antibodies after HPV infection and vaccination. Clin. Vaccine Immunol. 20, 1329–1332.10.1128/CVI.00153-13Search in Google Scholar

Schiller, J.T. and Lowy, D.R. (2012). Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat. Rev. Microbiol. 10, 681–692.10.1038/nrmicro2872Search in Google Scholar

Schiller, J.T., Castellsague, X., and Garland, S.M. (2012). A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30(Suppl 5), F123–F138.10.1016/j.vaccine.2012.04.108Search in Google Scholar

Schiller, J.T. (2016). The potential benefits of HPV vaccination in previously infected women. EBioMedicine 10, 5–6.10.1016/j.ebiom.2016.08.005Search in Google Scholar

Sehr, P., Rubio, I., Seitz, H., Putzker, K., Ribeiro-Muller, L., Pawlita, M., and Muller, M. (2013). High-throughput pseudovirion-based neutralization assay for analysis of natural and vaccine-induced antibodies against human papillomaviruses. PLoS One 8, e75677.10.1371/journal.pone.0075677Search in Google Scholar

Seitz, H., Schmitt, M., Bohmer, G., Kopp-Schneider, A., and Muller, M. (2013). Natural variants in the major neutralizing epitope of human papillomavirus minor capsid protein L2. Int. J. Cancer 132, E139–E148.10.1002/ijc.27831Search in Google Scholar

Seitz, H., Canali, E., Ribeiro-Muller, L., Palfi, A., Bolchi, A., Tommasino, M., Ottonello, S., and Muller, M. (2014). A three component mix of thioredoxin-L2 antigens elicits broadly neutralizing responses against oncogenic human papillomaviruses. Vaccine 32, 2610–2617.10.1016/j.vaccine.2014.03.033Search in Google Scholar

Seitz, H., Ribeiro-Muller, L., Canali, E., Bolchi, A., Tommasino, M., Ottonello, S., and Muller, M. (2015). Robust in vitro and in vivo neutralization against multiple high-risk HPV types induced by a thermostable thioredoxin-L2 vaccine. Cancer Prev. Res. (Phila) 8, 932–941.10.1158/1940-6207.CAPR-15-0164Search in Google Scholar

Simms, K.T., Smith, M.A., Lew, J.B., Kitchener, H.C., Castle, P.E., and Canfell, K. (2016). Will cervical screening remain cost-effective in women offered the next generation nonavalent HPV vaccine? Results for four developed countries. Int. J. Cancer 139, 2771–2780.10.1002/ijc.30392Search in Google Scholar

Slupetzky, K., Gambhira, R., Culp, T.D., Shafti-Keramat, S., Schellenbacher, C., Christensen, N.D., Roden, R.B., and Kirnbauer, R. (2007). A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine 25, 2001–2010.10.1016/j.vaccine.2006.11.049Search in Google Scholar

Suzich, J.A., Ghim, S.J., Palmer-Hill, F.J., White, W.I., Tamura, J.K., Bell, J.A., Newsome, J.A., Jenson, A.B., and Schlegel, R. (1995). Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proc. Natl. Acad. Sci. USA 92, 11553–11557.10.1073/pnas.92.25.11553Search in Google Scholar

Thompson, H.S., Davies, M.L., Holding, F.P., Fallon, R.E., Mann, A.E., O’Neill, T., and Roberts, J.S. (1999). Phase I safety and antigenicity of TA-GW: a recombinant HPV6 L2E7 vaccine for the treatment of genital warts. Vaccine 17, 40–49.10.1016/S0264-410X(98)00146-7Search in Google Scholar

Thones, N., Herreiner, A., Schadlich, L., Piuko, K., and Muller, M. (2008). A direct comparison of human papillomavirus type 16 L1 particles reveals a lower immunogenicity of capsomeres than viruslike particles with respect to the induced antibody response. J. Virol. 82, 5472–5485.10.1128/JVI.02482-07Search in Google Scholar PubMed PubMed Central

Tong, N.K., Beran, J., Kee, S.A., Miguel, J.L., Sanchez, C., Bayas, J.M., Vilella, A., de Juanes, J.R., Arrazola, P., Calbo-Torrecillas, F., et al. (2005). Immunogenicity and safety of an adjuvanted hepatitis B vaccine in pre-hemodialysis and hemodialysis patients. Kidney Int. 68, 2298–2303.10.1111/j.1523-1755.2005.00689.xSearch in Google Scholar PubMed

Tumban, E., Peabody, J., Peabody, D.S., and Chackerian, B. (2011). A pan-HPV vaccine based on bacteriophage PP7 VLPs displaying broadly cross-neutralizing epitopes from the HPV minor capsid protein, L2. PLoS One 6, e23310.10.1371/journal.pone.0023310Search in Google Scholar

Tumban, E., Muttil, P., Escobar, C.A., Peabody, J., Wafula, D., Peabody, D.S., and Chackerian, B. (2015). Preclinical refinements of a broadly protective VLP-based HPV vaccine targeting the minor capsid protein, L2. Vaccine 33, 3346–3353.10.1016/j.vaccine.2015.05.016Search in Google Scholar

Vandepapeliere, P., Barrasso, R., Meijer, C.J., Walboomers, J.M., Wettendorff, M., Stanberry, L.R., and Lacey, C.J. (2005). Randomized controlled trial of an adjuvanted human papillomavirus (HPV) type 6 L2E7 vaccine: infection of external anogenital warts with multiple HPV types and failure of therapeutic vaccination. J. Infect. Dis. 192, 2099–2107.10.1086/498164Search in Google Scholar

Verdenius, I., Groner, J.A., and Harper, D.M. (2013). Cross protection against HPV might prevent type replacement. Lancet Infect. Dis. 13, 195.10.1016/S1473-3099(13)70024-0Search in Google Scholar

Vichnin, M., Bonanni, P., Klein, N.P., Garland, S.M., Block, S.L., Kjaer, S.K., Sings, H.L., Perez, G., Haupt, R.M., Saah, A.J., et al. (2015). An overview of quadrivalent human papillomavirus vaccine safety: 2006 to 2015. Pediatr. Infect. Dis. J. 34, 983–991.10.1097/INF.0000000000000793Search in Google Scholar

Wang, J.W., Jagu, S., Wang, C., Kitchener, H.C., Daayana, S., Stern, P.L., Pang, S., Day, P.M., Huh, W.K., and Roden, R.B. (2014). Measurement of neutralizing serum antibodies of patients vaccinated with human papillomavirus L1 or L2-based immunogens using furin-cleaved HPV pseudovirions. PLoS One 9, e101576.10.1371/journal.pone.0101576Search in Google Scholar

Wheeler, C.M., Kjaer, S.K., Sigurdsson, K., Iversen, O.E., Hernandez-Avila, M., Perez, G., Brown, D.R., Koutsky, L.A., Tay, E.H., Garcia, P., et al. (2009). The impact of quadrivalent human papillomavirus (HPV; types 6, 11, 16, and 18) L1 virus-like particle vaccine on infection and disease due to oncogenic nonvaccine HPV types in sexually active women aged 16–26 years. J. Infect. Dis. 199, 936–944.10.1086/597309Search in Google Scholar

Wheeler, C.M., Castellsague, X., Garland, S.M., Szarewski, A., Paavonen, J., Naud, P., Salmeron, J., Chow, S.N., Apter, D., Kitchener, H., et al. (2012). Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial. Lancet Oncol. 13, 100–110.10.1016/S1470-2045(11)70287-XSearch in Google Scholar

Wu, W.H., Alkutkar, T., Karanam, B., Roden, R.B., Ketner, G., and Ibeanu, O.A. (2015). Capsid display of a conserved human papillomavirus L2 peptide in the adenovirus 5 hexon protein: a candidate prophylactic hpv vaccine approach. Virol. J. 12, 140.10.1186/s12985-015-0364-7Search in Google Scholar PubMed PubMed Central

Yi, L., Vaudaux, B., Sandu, K., and Nisa, L. (2014). Prolonged remission of juvenile-onset respiratory papillomatosis: a post-expositional role of the tetravalent anti-HPV vaccine? Int. J. Pediatr. Otorhinolaryngol. 78, 388–390.10.1016/j.ijporl.2013.12.013Search in Google Scholar PubMed

Yoon, S.W., Lee, T.Y., Kim, S.J., Lee, I.H., Sung, M.H., Park, J.S., and Poo, H. (2012). Oral administration of HPV-16 L2 displayed on Lactobacillus casei induces systematic and mucosal cross-neutralizing effects in Balb/c mice. Vaccine 30, 3286–3294.10.1016/j.vaccine.2012.03.009Search in Google Scholar

Zhang, T., Liu, H., Chen, X., Wang, Z., Wang, S., Qu, C., Zhang, J., and Xu, X. (2016). Lipidated L2 epitope repeats fused with a single-chain antibody fragment targeting human FcgammaRI elicited cross-neutralizing antibodies against a broad spectrum of human papillomavirus types. Vaccine 34, 5531–5539.10.1016/j.vaccine.2016.10.009Search in Google Scholar

Zhou, J., Sun, X.Y., Stenzel, D.J., and Frazer, I.H. (1991). Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185, 251–257.10.1016/0042-6822(91)90772-4Search in Google Scholar

Zhou, J., Stenzel, D.J., Sun, X.Y., and Frazer, I.H. (1993). Synthesis and assembly of infectious bovine papillomavirus particles in vitro. J. Gen. Virol. 74, 763–768.10.1099/0022-1317-74-4-763Search in Google Scholar PubMed

Received: 2017-1-18
Accepted: 2017-3-16
Published Online: 2017-3-20
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2017-0105/html
Scroll to top button