Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 7, 2013

Effects of low intensity laser irradiation during healing of infected skin wounds in the rat

Auswirkungen von Low-Level-Laser-Bestrahlung auf die Heilung von infizierten Wunden der Haut am Rattenmodell

  • Ethne L. Nussbaum EMAIL logo , Facundo Las Heras , Kenneth P.H. Pritzker , Tony Mazzulli and Lothar Lilge

Abstract

Background and objective: Low intensity laser irradiation remains a controversial treatment for non-healing wounds. This study examines the effect of low intensity light on healing of infected skin wounds in the rat.

Materials and methods: Wounds on the rat dorsum were inoculated with Pseudomonas aeruginosa. Wounds were irradiated or sham-irradiated three times weekly from day 1 to 19 using 635-nm or 808-nm diode lasers delivering continuous wave (CW) or intensity modulated (3800 Hz) laser radiation, all at radiant exposures of 1 and 20 J/cm2. Wound area and bacterial growth on the wound surface were evaluated three times a week. Histological and immunohistochemical analyses were performed at day 8 and 19.

Results: Wounds that were irradiated using a wavelength of 635 nm (1 and 20 J/cm2) or intensity modulated 808-nm laser light at 20 J/cm2 were smaller in area at day 19 than the sham-irradiated controls (achieved significance level=0.0105–0.0208) and were similar to controls in respect of bacterial growth. The remaining light protocols had no effect on wound area at day 19 although they increased Staphylococcus aureus growth across the time line compared with controls (p<0.0001 to p<0.004). CW 808-nm light at 20 J/cm2 significantly delayed half-heal time. Histological and immunohistochemical analyses supported wound closure findings: improved healing was associated with faster resolution of inflammation during the acute phase and increased signs of late repair at day 19. Significant inflammation was seen at day 19 in all irradiated groups regardless of radiant exposure, except when using 635 nm at 1 J/cm2.

Conclusions: Red light improved healing of wounds. Only one 808-nm light protocol enhanced healing; lack of benefit using the remaining 808-nm light protocols may have been due to stimulatory effects of the light on S. aureus growth.

Zusammenfassung

Hintergrund und Zielsetzung: Low-Intensity-Laserbestrahlung bleibt eine umstrittene Behandlung von nicht heilenden Wunden. Diese Studie untersucht die Wirkung von Laserlicht niedriger Intensität auf die Heilung von infizierten Wunden der Haut am Rattenmodell.

Materialien und Methoden: Wunden auf dem Rücken von Ratten wurden mit dem Pseudomonas aeruginosa geimpft und anschließend dreimal wöchentlich, beginnend am Tag 1 bis zum Tag 19, bestrahlt oder scheinbestrahlt. Für die Laserbestrahlung wurden ein kontinuierlich abstrahlender (continuous wave, cw) 635 nm-Diodenlaser oder ein 808 nm-Diodenlaser im cw- bzw. intensitätsmodulierten (3800 Hz) Modus verwendet, jeweils mit einer Energiedichte von 1 und 20 J/cm2. Die Wundbereiche und das Bakterienwachstum an der Wundoberfläche wurden dreimal wöchentlich ausgewertet. Histologische und immunhistochemische Analysen wurden am Tag 8 und 19 durchgeführt.

Ergebnisse: Wunden, die mit einer Wellenlänge von 635 nm (1 und 20 J/cm2) oder mit intensitätsmoduliertem 808 nm-Laserlicht bei 20 J/cm2 bestrahlt wurden, waren am Tag 19 in der Fläche kleiner als die scheinbestrahlten Proben (erreichtes Signifikanzniveau=0,0105 bis 0,0208) und in Bezug auf das Bakterienwachstum vergleichbar mit der Kontrollgruppe. Die anderen Bestrahlungsprotokolle hatten keinen Einfluss auf den Wundbereich am Tag 19, führten über die Zeit aber zu einem im Vergleich zur Kontrollgruppe erhöhten Staphylococcus aureus-Wachstum (p<0,0001 bis p<0,004). Hingegen hat die kontinuierliche 808 nm-Laserbestrahlung mit 20 J/cm2 die Heilung verzögert. Die histologischen und immunhistochemischen Analysen unterstützen die Wundverschlussbefunde: die verbesserte Heilung ging mit einem schnellen Rückgang der Entzündung während der akuten Phase einher und es gab erhöhte Anzeichen für eine späte Reparatur am Tag 19. In allen bestrahlten Gruppen und unabhängig von der verwendeten Energiedichte – außer bei der Verwendung von 635 nm bei 1 J/cm2 – wurde am Tag 19 eine deutliche Entzündung gesehen.

Schlussfolgerungen: Rotes Licht verbessert die Heilung von Wunden. Nur ein 808 nm-Bestrahlungsprotokoll verbesserte die Heilung; der fehlende Nutzen der restlichen 808 nm-Bestrahlungsprotokolle lässt sich möglicherweise auf die stimulierende Wirkung des Lichts auf das S. aureus-Wachstum zurückführen.


Corresponding author: Ethne L. Nussbaum, Departments of Physical Therapy, Mount Sinai Hospital, University of Toronto, 500 University Ave, Toronto, ON M5G 1X5, Canada, e-mail:

This work was made possible by a grant from the Canadian Institutes of Health Research IMH-67522.

References

[1] Kaviani A, Djavid GE, Ataie-Fashtami L, Fateh M, Ghodsi M, Salami M, Zand N, Kashef N, Larijani B. A randomized clinical trial on the effect of low-level laser therapy on chronic diabetic foot wound healing: a preliminary report. Photomed Laser Surg 2011;29(2):109–14.10.1089/pho.2009.2680Search in Google Scholar

[2] Caetano KS, Frade MA, Minatel DG, Santana LA, Enwemeka CS. Phototherapy improves healing of chronic venous ulcers. Photomed Laser Surg 2009;27(1):111–8.10.1089/pho.2008.2398Search in Google Scholar

[3] Minatel DG, Frade MA, França SC, Enwemeka CS. Phototherapy promotes healing of chronic diabetic leg ulcers that failed to respond to other therapies. Lasers Surg Med 2009;41(6): 433–41.10.1002/lsm.20789Search in Google Scholar

[4] Kopera D, Kokol R, Berger C, Haas J. Low level laser: does it influence wound healing in venous leg ulcers? A randomized, placebo-controlled, double-blind study. Br J Dermatol 2005;152(6):1368–70.10.1111/j.1365-2133.2005.06586.xSearch in Google Scholar

[5] Taly AB, Sivaraman Nair KP, Murali T, John A. Efficacy of multiwavelength light therapy in the treatment of pressure ulcers in subjects with disorders of the spinal cord: a randomized double-blind controlled trial. Arch Phys Med Rehabil 2004;85(10):1657–61.10.1016/j.apmr.2004.03.028Search in Google Scholar

[6] Lucas C, van Gemert MJ, de Haan RJ. Efficacy of low-level laser therapy in the management of stage III decubitus ulcers: a prospective, observer-blinded multicentre randomised clinical trial. Lasers Med Sci 2003;18(2):72–7.10.1007/s10103-003-0259-5Search in Google Scholar

[7] Franek A, Król P, Kucharzewski M. Does low output laser stimulation enhance the healing of crural ulceration? Some critical remarks. Med Eng Phys 2002;24(9):607–15.10.1016/S1350-4533(02)00112-1Search in Google Scholar

[8] Gupta AK, Filonenko N, Salansky N, Sauder DN. The use of low energy photon therapy (LEPT) in venous leg ulcers: a double-blind, placebo-controlled study. Dermatol Surg 1998;24(12):1383–6.10.1111/j.1524-4725.1998.tb00019.xSearch in Google Scholar PubMed

[9] Nussbaum EL, Biemann I, Mustard B. Comparison of ultrasound/ultraviolet-C and laser for treatment of pressure ulcers in patients with spinal cord injury. Phys Ther 1994;74(9):812–23; discussion 824–5.10.1093/ptj/74.9.812Search in Google Scholar PubMed

[10] Lundeberg T, Malm M. Low-power HeNe laser treatment of venous leg ulcers. Ann Plast Surg 1991;27(6):537–9.10.1097/00000637-199112000-00004Search in Google Scholar PubMed

[11] Malm M, Lundeberg T. Effect of low power gallium arsenide laser on healing of venous ulcers. Scand J Plast Reconstr Surg Hand Surg 1991;25(3):249–51.10.3109/02844319109020628Search in Google Scholar PubMed

[12] Sarvis CM. Infected wounds: tipping the balance with STONES. Nursing 2007;37(7):62.10.1097/01.NURSE.0000279444.54811.6cSearch in Google Scholar PubMed

[13] Cannon BC, Cannon JP. Management of pressure ulcers. Am J Health Syst Pharm 2004;61(18):1895–905; quiz 1906–7.10.1093/ajhp/61.18.1895Search in Google Scholar

[14] Robson MC. Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 1997;77(3):637–50.Search in Google Scholar

[15] Laato M, Lehtonen OP, Niinikoski J. Granulation tissue formation in experimental wounds inoculated with Staphylococcus aureus. Acta Chir Scand 1985;151(4):313–8.Search in Google Scholar

[16] McMinn R. Skin and subcutaneous tissues. Volume tissue repair. New York and London: Academic Press; 1969.Search in Google Scholar

[17] Clark RAF. Wound repair: overview and general considerations. In: Clark RAF, editor. The molecular and cellular biology of wound repair, 2nd edition. New York: Springer; 1996, p. 3–50.10.1007/978-1-4899-0185-9_1Search in Google Scholar

[18] Nussbaum EL, Lilge L, Mazzulli T. Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light. Lasers Surg Med 2002;31(5):343–51.10.1002/lsm.10121Search in Google Scholar PubMed

[19] Nussbaum EL, Lilge L, Mazzulli T. Effects of 630-, 660-, 810-, and 905-nm laser irradiation delivering radiant exposure of 1-50 J/cm2 on three species of bacteria in vitro. J Clin Laser Med Surg 2002;20(6):325–33.10.1089/104454702320901116Search in Google Scholar PubMed

[20] Bayat M, Vasheghani MM, Razavi N, Taheri S, Rakhshan M. Effect of low-level laser therapy on the healing of second-degree burns in rats: a histological and microbiological study. J Photochem Photobiol B 2005;78(2):171–7.10.1016/j.jphotobiol.2004.08.012Search in Google Scholar PubMed

[21] Kim K-S, Lee P-Y, Lee J-H, Kim Y-K. Effects of low level laser irradiation (LLLI) with 904 nm pulsed diode laser on Staphylococcus aureus. Laser Therapy 1997;9(3):121–9.10.5978/islsm.9.121Search in Google Scholar

[22] Nussbaum EL, Mazzulli T, Pritzker KP, Las Heras F, Jing F, Lilge L. Effects of low intensity laser irradiation during healing of skin lesions in the rat. Lasers Surg Med 2009;41(5):372–81.10.1002/lsm.20769Search in Google Scholar PubMed

[23] Lee P, Kim K, Kim K. Effects of low incident energy levels of infrared laser irradiation on healing of infected open skin wounds in rats. Laser Therapy 1993;5(2):59–64.10.5978/islsm.93-OR-06Search in Google Scholar

[24] Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T. Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis 2003;187(11):1717–25.10.1086/375244Search in Google Scholar PubMed PubMed Central

[25] Wilson M, Yianni C. Killing of methicillin-resistant Staphylococcus aureus by low-power laser light. J Med Microbiol 1995;42(1):62–6.10.1099/00222615-42-1-62Search in Google Scholar PubMed

[26] Valencia IC, Kirsner RS, Kerdel FA. Microbiologic evaluation of skin wounds: alarming trend toward antibiotic resistance in an inpatient dermatology service during a 10-year period. J Am Acad Dermatol 2004;50(6):845–9.10.1016/j.jaad.2003.11.064Search in Google Scholar PubMed

[27] Biswas L, Biswas R, Schlag M, Bertram R, Götz F. Small-colony variant selection as a survival strategy for Staphylococcus aureus in the presence of Pseudomonas aeruginosa. Appl Environ Microbiol 2009;75(21):6910–2.10.1128/AEM.01211-09Search in Google Scholar PubMed PubMed Central

[28] Mitik-Dineva N, Wang J, Truong VK, Stoddart P, Malherbe F, Crawford RJ, Ivanova EP. Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus attachment patterns on glass surfaces with nanoscale roughness. Curr Microbiol 2009;58(3):268–73.10.1007/s00284-008-9320-8Search in Google Scholar PubMed

[29] Abraham M, Venter P, Lues JF, Ivanov I, de Smidt O. Influence of selected antimicrobials on the viability, endotoxicity and lipopolysaccharide composition of Pseudomonas aeruginosa in vitro. Int J Antimicrob Agents 2009;34(5):419–23.10.1016/j.ijantimicag.2009.06.017Search in Google Scholar PubMed

[30] Zhao G, Hochwalt PC, Usui ML, Underwood RA, Singh PK, James GA, Stewart PS, Fleckman P, Olerud JE. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: a model for the study of chronic wounds. Wound Repair Regen 2010;18(5):467–77.10.1111/j.1524-475X.2010.00608.xSearch in Google Scholar PubMed PubMed Central

[31] Malic S, Hill KE, Hayes A, Percival SL, Thomas DW, Williams DW. Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology 2009;155(Pt 8):2603–11.10.1099/mic.0.028712-0Search in Google Scholar PubMed

[32] Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C. Macrophage responsiveness to light therapy. Lasers Surg Med 1989;9(5):497–505.10.1002/lsm.1900090513Search in Google Scholar PubMed

[33] Byrnes KR, Barna L, Chenault VM, Waynant RW, Ilev IK, Longo L, Miracco C, Johnson B, Anders JJ. Photobiomodulation improves cutaneous wound healing in an animal model of type II diabetes. Photomed Laser Surg 2004;22(4):281–90.10.1089/pho.2004.22.281Search in Google Scholar PubMed

Erhalten: 2013-9-25
Revidiert: 2013-11-8
Angenommen: 2013-11-11
Online erschienen: 2013-12-7
Erschienen im Druck: 2014-2-1

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/plm-2013-0049/html
Scroll to top button