Skip to main content

Advertisement

Log in

Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Elastic modulus of bone was investigated by nanoindentation using common methods of sample preparation, data collection, and analysis, and compared to dynamic mechanical analysis (DMA: three-point bending) for the same samples. Nanoindentation (Berkovich, 5 μm and 21 μm radii spherical indenters) and DMA were performed on eight wet and dehydrated (100% ethanol), machined equine cortical bone beams. Samples were embedded in polymethylmethacrylate (PMMA) and mechanical tests repeated. Indentation direction was transverse to the bone long axis while DMA tested longitudinally, giving approximately 12% greater modulus in DMA. For wet samples, nanoindentation with spherical indenters revealed a low modulus surface layer. Estimates of the volume of material contributing to elastic modulus measurement showed that the surface layer influences the measured modulus at low loads. Consistent results were obtained for embedded tissue regardless of indenter geometry, provided appropriate methods and analysis were used. Modulus increased for nanoindentation (21 μm radius indenter) from 11.7 GPa ± 1.7 to 15.0 GPa ± 2.2 to 19.4 GPa ± 2.1, for wet, dehydrated in ethanol, and embedded conditions, respectively. The large increases in elastic modulus caused by replacing water with ethanol and ethanol with PMMA demonstrate that the role of water in fine pore space and its interaction with collagen strongly influence the mechanical behavior of the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.B. Martin and D.L. Boardman, J. Biomech. 26, 1047 (1993).

    Article  CAS  Google Scholar 

  2. R.B. Martin and J. Ishida, J. Biomech, 22, 419 (1989).

    Article  CAS  Google Scholar 

  3. V.L. Ferguson, A.J. Bushby, and A. Boyde, J. Anat. 203, 191 (2003).

    Article  Google Scholar 

  4. P. Lucksanasombool, W.A.J. Higgs, R.J.E.D. Higgs, and M.V. Swain, Biomaterials 22, 3127 (2001).

    Article  CAS  Google Scholar 

  5. J.J. Broz, S.J. Simske, A.R. Greenberg, and M.W. Luttges. J. Biomech. Eng. 115, 447 (1993).

    Article  CAS  Google Scholar 

  6. J.D. Currey, J. Biomech. 21, 439 (1988).

    Article  CAS  Google Scholar 

  7. J. Menčík and M.V. Swain, J. Mater. Res. 10, 1491 (1995).

    Article  Google Scholar 

  8. M.B. Gustafson, R.B. Martin, V. Gibson, D.H. Storms, S.M. Stover, J. Gibeling, and L. Griffin, Calcium buffering is required to maintain bone stiffness in saline solution. J. Biomech. 29, 1191 (1996).

    CAS  Google Scholar 

  9. S. Habelitz, G.W. Marshall, Jr., M. Balooch, and S.J. Marshall, J. Biomech. 35, 995 (2002).

    Article  Google Scholar 

  10. G.W. Marshall, Jr., I.C. Wu-Magidi, L.G. Watanabe, N. Inai, M. Balooch, J.H. Kinney, and S.J. Marshall, J. Biomed. Mater. Res. 42, 500 (1998).

    Article  CAS  Google Scholar 

  11. M. Balooch, I.C. Wu-Magidi, A. Balazs, A.S. Lundkvist, S.J. Marshall, G.W. Marshall, W.J. Siekhaus, and J.H. Kinney, J. Biomed. Mater. Res. 40, 539 (1998).

    Article  CAS  Google Scholar 

  12. G.P. Evans, J.C. Behiri, J.D. Currey, and W. Bonfield, J. Mater. Sci. Mater. Med. 1, 38 (1990).

    Article  CAS  Google Scholar 

  13. S.J. Simske, J.J. Broz, and M.W. Luttges, Effect of suspension on mouse bone microhardness. J. Mater. Sci. Mater. Med. 6, 486 (1995).

    Article  CAS  Google Scholar 

  14. J-Y. Rho, J.D. Currey, P. Zioupos, and G.M. Pharr, J. Exp. Biol. 204, 1775 (2001).

    CAS  Google Scholar 

  15. J-Y. Rho and G.M. Pharr, J. Mater. Sci. Mater. Med. 10, 485 (1999).

    Article  CAS  Google Scholar 

  16. S. Hengsberger, A. Kulik, and P.H. Zysset, Bone 30, 178 (2002).

    Article  CAS  Google Scholar 

  17. C.H. Turner, J. Rho, Y. Takano, T.Y. Tsui, and G.M. Pharr, J. Biomech. 32, 437 (1999).

    Article  CAS  Google Scholar 

  18. F.G. Evans and M. Lebow, J. Appl. Physiol. 3, 563 (1951).

    Article  CAS  Google Scholar 

  19. P.G. Howell and A. Boyde, Scanning 21, 361 (1999).

    Article  CAS  Google Scholar 

  20. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, and S.A. Goldstein, J. Biomech. 32, 1005 (1999).

    CAS  Google Scholar 

  21. J-Y. Rho, P. Zioupos, J.D. Currey, and G.M. Pharr, Bone 25, 295 (1999).

    Article  CAS  Google Scholar 

  22. J.H. Kinney, M. Balooch, S.J. Marshall, G.W. Marshall, Jr., and T.P. Weihs, Hardness and Young’s modulus of peritubular and intertubular dentine Archs. Oral Biol. 41, 9 (1996).

    CAS  Google Scholar 

  23. K. Herrmann, N.M. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seeman, Thin Solid Films 377–378, 394 (2000).

    Article  Google Scholar 

  24. W. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  25. J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993).

    Article  CAS  Google Scholar 

  26. A.J. Bushby, Non-Destruct. Test. Eval. 17, 213 (2001).

    Article  Google Scholar 

  27. A.J. Bushby and N.M. Jennett, in Fundamentals of Nanoindentation and Nanotrilology II, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q7.17.

  28. K.P. Menard, Dynamic Mechanical Analysis: A Practical Introduction (CRC Press, Boca Raton, London, 1999), pp. 208.

  29. M. Oyen-Tiesma, Y.A. Toivola, and R.F. Cook, in Fundamentals of Nanoindentation and Nanotribology III, edited by S.P. Baker, R.F. Cook, S.G. Corcoran, and N.R. Moody (Mater. Res. Soc. Symp. Proc. 649, Warrendale, PA, 2001), Q15.1.

  30. T. Chudoba and F. Richter, Surf. Coat. Technol. 148, 191 (2001).

    Article  CAS  Google Scholar 

  31. B.J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D: Appl. Phys. 31, 2395 (1998).

    Article  CAS  Google Scholar 

  32. J. Mencik, D. Munz, E. Quandt, E.R. Weppelman, and M.V. Swain, J. Mater. Res. 12, 2475 (1997).

    Article  CAS  Google Scholar 

  33. N.M. Jennett and A.J. Bushby, in Thin Films: Stresses and Mechanical Properties IX, edited by C.S. Ozkan, L.B. Freund, R.C. Cammarata, and H. Gao (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), p. 73.

  34. A.C. Fischer-Cripps, Introduction to Contact Mechanics (Springer-Verlag, New York, 2000).

  35. G. Melacini, A.M.J.J. Bonvin, M. Goodman, R. Boelens, and R. Kaptein, J. Mol. Biol. 300, 1041 (2000).

    Article  CAS  Google Scholar 

  36. H. Saito and M. Yokoi, J. Biochem. (Tokyo) 111, 376 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushby, A.J., Ferguson, V.L. & Boyde, A. Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate. Journal of Materials Research 19, 24 (2004). https://doi.org/10.1557/jmr.2004.19.1.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/jmr.2004.19.1.249

Navigation