Skip to main content
Log in

Therapeutic potential of nanoceria in regenerative medicine

  • Biological Interactions of Oxide Nanoparticles: The Good and The Evil
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Tissue engineering and regenerative medicine aim to achieve functional restoration of tissue or cells damaged through disease, aging, or trauma. Advancement of tissue engineering requires innovation in the field of three-dimensional scaffolding and functionalization with bioactive molecules. Nanotechnology offers advanced materials with patterned nano-morphologies for cell growth and different molecular substrates that can support cell survival and functions. Cerium oxide nanoparticles (nanoceria) can control intracellular as well as extracellular reactive oxygen and nitrogen species. Recent findings suggest that nanoceria can enhance long-term cell survival, enable cell migration and proliferation, and promote stem cell differentiation. Moreover, the self-regenerative property of nanoceria permits a small dose to remain catalytically active for an extended time. This review summarizes the possibilities and applications of nanoceria in the field of tissue engineering and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C. Korsvik, S. Patil, S. Seal, W.T. Self, Chem. Commun. 10, 1056 (2007).

    Google Scholar 

  2. T. Pirmohamed, J.M. Dowding, S. Singh, B. Wasserman, E. Heckert, A.S. Karakoti, J.E.S. King, S. Seal, W.T. Self, Chem. Commun. 46, 2736 (2010).

    Google Scholar 

  3. Y. Xue, Y. Zhai, K. Zhou, L. Wang, H. Tan, Q. Luan, X. Yao, Chem. Eur. J. 18, 11115 (2012).

    Google Scholar 

  4. J.M. Dowding, S. Seal, W.T. Self, Drug Deliv. Transl. Res. 3, 375 (2013).

    Google Scholar 

  5. J.M. Dowding, T. Dosani, A. Kumar, S. Seal, W.T. Self, Chem. Commun. 48, 4896 (2012).

    Google Scholar 

  6. J.-D. Cafun, K.O. Kvashnina, E. Casals, V.F. Puntes, P. Glatzel, ACS Nano 7, 10726 (2013).

    Google Scholar 

  7. S. Das, J.M. Dowding, K.E. Klump, J.F. McGinnis, W. Self, S. Seal, Nanomedicine 8, 1483 (2013).

    Google Scholar 

  8. A.E. Nel, L. Madler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Nat. Mater. 8, 543 (2009).

    Google Scholar 

  9. A.S. Karakoti, S. Kuchibhatla, D.R. Baer, S. Thevuthasan, D.C. Sayle, S. Seal, Small 4, 1210 (2008).

    Google Scholar 

  10. F. Zhang, S.W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80, 127 (2002).

    Google Scholar 

  11. G. Sharma, V. Kodali, M. Gaffrey, W. Wang, K.R. Minard, N.J. Karin, J.G. Teeguarden, B.D. Thrall, Nanotoxicology 8, 663 (2013).

    Google Scholar 

  12. S. Kuchibhata, A.S. Karakoti, D.R. Baer, S. Samudrala, M.H. Engelhard, J.E. Amonette, S. Thevuthasan, S. Seal, J. Phys. Chem. C 116, 14108 (2012).

    Google Scholar 

  13. A. Kumar, S. Das, P. Munusamy, W. Self, D.R. Baer, D.C. Sayle, S. Seal, Environ. Sci. Nano (2014), doi: 10.1039/C4EN00052H.

  14. A.S. Karakoti, S. Singh, A. Kumar, M. Malinska, S. Kuchibhatla, K. Wozniak, W.T. Self, S. Seal, J. Am. Chem. Soc. 131, 14144 (2009).

    Google Scholar 

  15. A. Arya, N.K. Sethy, S.K. Singh, M. Das, K. Bhargava, Int. J. Nanomed. 8, 4507 (2013).

    Google Scholar 

  16. M. Kumari, S.P. Singh, S. Chinde, M.F. Rahman, M. Mahboob, P. Grover, Int. J. Toxicol. 33, 86 (2014).

    Google Scholar 

  17. A. Karakoti, S. Singh, J.M. Dowding, S. Seal, W.T. Self, Chem. Soc. Rev. 39, 4422 (2010).

    Google Scholar 

  18. A. Hosseini, M. Baeeri, M. Rahimifard, M. Navaei-Nigjeh, A. Mohammadirad, N. Pourkhalili, S. Hassani, M. Kamali, M. Abdollahi, Hum. Exp. Toxicol. 32, 544 (2013).

    Google Scholar 

  19. S. Chen, Y. Hou, G. Cheng, C. Zhang, S. Wang, J. Zhang, Biol. Trace Elem. Res. 154, 156 (2013).

    Google Scholar 

  20. G. Ciofani, G.G. Genchi, I. Liakos, V. Cappello, M. Gemmi, A. Athanassiou, B. Mazzolai, V. Mattoli, Pharm. Res. 30, 2133 (2013).

    Google Scholar 

  21. A. Arya, N.K. Sethy, M. Das, S.K. Singh, A. Das, S.K. Ujjain, R.K. Sharma, M. Sharma, K. Bhargava, Free Radic. Res. 48 (7), 784 (2014).

    Google Scholar 

  22. Z.K. Otrock, R.A. Mahfouz, J.A. Makarem, A.I. Shamseddine, Blood Cells Mol. Dis. 39, 212 (2007).

    Google Scholar 

  23. S. Das, S. Singh, J.M. Dowding, S. Oommen, A. Kumar, T.X. Sayle, S. Saraf, C.R. Patra, N.E. Vlahakis, D.C. Sayle, W.T. Self, S. Seal, Biomaterials 33, 7746 (2012).

    Google Scholar 

  24. S. Chigurupati, M.R. Mughal, E. Okun, S. Das, A. Kumar, M. McCaffery, S. Seal, M.P. Mattson, Biomaterials 34, 2194 (2013).

    Google Scholar 

  25. S. Giri, A. Karakoti, R.P. Graham, J.L. Maguire, C.M. Reilly, S. Seal, R. Rattan, V. Shridhar, PLoS One 8, e54578 (2013).

    Google Scholar 

  26. L. Alili, M. Sack, C. von Montfort, S. Giri, S. Das, K.S. Carroll, K. Zanger, S. Seal, P. Brenneisen, Antioxid. Redox Signaling 19 (8), 765 (2012).

    Google Scholar 

  27. M.S. Wason, J. Colon, S. Das, S. Seal, J. Turkson, J. Zhao, C.H. Baker, Nanomedicine. 9 (4), 558 (2013).

    Google Scholar 

  28. A.S. Karakoti, O. Tsigkou, S. Yue, P.D. Lee, M.M. Stevens, J.R. Jones, S. Seal, J. Mater. Chem. 20, 8912 (2010).

    Google Scholar 

  29. C. Mandoli, F. Pagliari, S. Pagliari, G. Forte, P. Di Nardo, S. Licoccia, E. Traversa, Adv. Funct. Mater. 20, 1617 (2010).

    Google Scholar 

  30. F. Pagliari, C. Mandoli, G. Forte, E. Magnani, S. Pagliari, G. Nardone, S. Licoccia, M. Minieri, P. Di Nardo, E. Traversa, ACS Nano 6, 3767 (2012).

    Google Scholar 

  31. T. Naganuma, E. Traversa, Biomaterials 35, 4441 (2014).

    Google Scholar 

  32. A. Ellison, R. Fry, S. Merchant, S. Kuiry, S. Patil, S. Seal, B. Rzigalinski, J. Neurotrauma 20 (10), 1105 (2003).

    Google Scholar 

  33. M. Das, S. Patil, N. Bhargava, J.F. Kang, L.M. Riedel, S. Seal, J.J. Hickman, Biomaterials 28, 1918 (2007).

    Google Scholar 

  34. B. Dangelo, S. Santucci, S. Benedetti, D. Loreto, S.F.R.A. Phani, F. Amicarelli, M. Paola Cerù, A. Cimini, Curr. Nanosci. 5, 167 (2009).

    Google Scholar 

  35. A. Cimini, B. D’Angelo, S. Das, R. Gentile, E. Benedetti, V. Singh, A.M. Monaco, S. Santucci, S. Seal, Acta Biomater. 8, 2056 (2012).

    Google Scholar 

  36. A.Y. Estevez, S. Pritchard, K. Harper, J.W. Aston, A. Lynch, J.J. Lucky J.S. Ludington, P. Chatani, W.P. Mosenthal, J.C. Leiter, S. Andreescu, J.S. Erlichman, Free Radic. Biol. Med. 51, 1155 (2011).

    Google Scholar 

  37. A.Y. Estevez, J.S. Erlichman, Cerium Oxide Nanoparticles for the Treatment of Neurological Oxidative Stress Diseases (American Chemical Society, Washington, DC, 2011), p. 255.

  38. W. Decoteau, A. Estevez, S. Leo-Nyquist, K. Heckman, K. Reed, “Ceria Nanoparticles Reduce Disease Severity in a Mouse Model of Multiple Sclerosis,” in TechConnect World Conference and Expo 2011 (TechConnect, Boston, MA, 2011).

  39. J. Chen, S. Patil, S. Seal, J.F. McGinnis, Nat. Nanotechnol. 1, 142 (2006).

    Google Scholar 

  40. L.L. Wong, S.M. Hirst, Q.N. Pye, C.M. Reilly, S. Seal, J.F. McGinnis, PLoS One 8, e58431 (2013).

    Google Scholar 

  41. S.V. Kyosseva, L. Chen, S. Seal, J.F. McGinnis, Exp. Eye Res. 116, 63 (2013).

    Google Scholar 

  42. X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, J.F. McGinnis, PLoS One 6, e16733 (2011).

    Google Scholar 

  43. X. Cai, S. Seal, J.F. McGinnis, Biomaterials 35, 249 (2014).

    Google Scholar 

  44. L. Kong, X. Cai, X. Zhou, L.L. Wong, A.S. Karakoti, S. Seal, J.F. McGinnis, Neurobiol. Dis. 42, 514 (2011).

    Google Scholar 

  45. S.M. Hirst, A.S. Karakoti, R.D. Tyler, N. Sriranganathan, S. Seal, C.M. Reilly, Small 5, 2848 (2009).

    Google Scholar 

  46. S.M. Hirst, A. Karakoti, S. Singh, W. Self, R. Tyler, S. Seal, C.M. Reilly, Environ. Toxicol. 28, 107 (2013).

    Google Scholar 

  47. I. Celardo, M. De Nicola, C. Mandoli, J.Z. Pedersen, E. Traversa, L. Ghibelli, ACS Nano 5, 4537 (2011).

    Google Scholar 

  48. K. Chaudhury, N.K. Babu, S. Das, A. Kumar, S. Seal, Nanomedicine. 9, 439 (2013).

    Google Scholar 

  49. R.W. Tarnuzzer, J. Colon, S. Patil, S. Seal, Nano Lett. 5, 2573 (2005).

    Google Scholar 

  50. J. Colon, L. Herrera, J. Smith, S. Patil, C. Komanski, P. Kupelian, S. Seal, D.W. Jenkins, C.H. Baker, Nanomedicine. 5, 225 (2009).

    Google Scholar 

  51. R.A. Madero-Visbal, B.E. Alvarado, J. Colon, C.H. Baker, M.S. Wason, B. Isley, S. Seal, C.M. Lee, S. Das, R. Mañon, Nanomedicine. 8, 1223 (2012).

    Google Scholar 

  52. D.R. Baer, M.H. Engelhard, G.E. Johnson, J. Laskin, J. Lai, K. Mueller, P. Munusamy, S. Thevuthasan, H. Wang, N. Washton, A. Elder, B.L. Baisch, A. Karakoti, S.V. Kuchibhatla, D. Moon, J. Vac. Sci. Technol. A 31, 50820 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the intramural research program of the National Institute on Aging. The work by J.F.M. was supported by NIH NEI Grant COBRE-P20 RR017703, P30-EY 12190, R21EY018306, R01EY18724, R01EY022111; National Science Foundation: CBET-0708172; and Research to Prevent Blindness. D.R.B. was supported by the NIEHS Center Grant U19 ES019544. Part of this work was performed using EMSL, a national scientific user facility sponsored by the US Department of Energy, Biological and Environmental Research and located at PNNL. S.S. and W.S. acknowledge NSF and NIH for various aspects of nano-biotechnology research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Chigurupati, S., Dowding, J. et al. Therapeutic potential of nanoceria in regenerative medicine. MRS Bulletin 39, 976–983 (2014). https://doi.org/10.1557/mrs.2014.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.221

Navigation