Skip to main content

Advertisement

Log in

New Directions in Photopolymerizable Biomaterials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article is based on the Outstanding Young Investigator Award presentation given by Kristi S. Anseth at the 2001 MRS Spring Meeting on April 17, 2001, in San Francisco. Anseth was recognized for “innovative work in polymeric biomaterials for drug delivery, bone and cartilage repair, and tissue engineering, and for outstanding leadership potential in this interdisciplinary field of materials research.”

Photopolymerization provides many advantages as a technique for the fabrication of biomaterials. Temporal and spatial control, along with the diversity in material properties found with photopolymerizable materials, are advantageous in the biomaterials industry. For instance, multifunctional anhydride monomers form highly cross-linked surface-eroding networks directly in bone defects. These networks have good mechanical properties that are maintained with degradation and have the potential to restore tissue-like properties to bone during the healing process. Additionally, cartilage-forming cells photoencapsulated in hydrogel networks secrete an extracellular matrix as the hydrogel is resorbed and may provide a treatment alternative for cartilage defects that do not heal spontaneously. Finally, transdermal polymerization (photopolymerization through the skin) of multifunctional monomers is a noninvasive technique that is being developed for tissue regeneration and wound-healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Decker, J. Coating Technol. 59 (1987) p. 97.

    CAS  Google Scholar 

  2. K.S. Anseth, S.M. Newman, and C.N. Bowman, Adv. Polym. Sci. 122 (1995) p. 177.

    Article  CAS  Google Scholar 

  3. J. Hill-West, S. Chowdhury, A. Sawhney, C. Pathak, R. Dunn, and J. Hubbell, Obstet. Gynecol. 83 (1994) p. 59.

    CAS  Google Scholar 

  4. H. Brem, K.A. Walter, and R. Langer, Eur. J. Pharm. Biopharm. 39 (1993) p. 2

    CAS  Google Scholar 

  5. D. Svaldi Muggli, A.K. Burkoth, and K.S. Anseth, J. Biomed. Mater. Res. 46 (1999) p. 271.

    Article  Google Scholar 

  6. J. Kloosterboer, Adv. Polym. Sci. 84 (1988) p. 1.

    Article  CAS  Google Scholar 

  7. D. Svaldi Muggli, A.K. Burkoth, S.A. Keyser, H.R. Lee, and K.S. Anseth, Macromolecules 31 (1998) p. 4120.

    Article  Google Scholar 

  8. K.S. Anseth, V.R. Shastri, and R. Langer, Nat. Biotech. 17 (1999) p. 156.

    Article  CAS  Google Scholar 

  9. J.A. Burdick, A.J. Peterson, and K.S. Anseth, Biomaterials 22 (2001) p. 1779.

    Article  CAS  Google Scholar 

  10. A.T. Metters, K.S. Anseth, and C.N. Bowman, Polymer 41 (2000) p. 3993.

    Article  CAS  Google Scholar 

  11. P. Martens, A.T. Metters, C.N. Bowman, and K.S. Anseth, Soc. Biomater. Trans. 24 (2001) p. 312.

    Google Scholar 

  12. S.J. Bryant and K.S. Anseth, J. Biomed. Mater. Res. 59 (2002) p. 63.

    Article  CAS  Google Scholar 

  13. S.J. Bryant and K.S. Anseth, “Controlling the Spatial Distribution of ECM Components in Degradable PEG Hydrogels for Tissue Engineering Cartilage,” J. Biomed. Mater. Res. (2001) in press.

    Google Scholar 

  14. S.J. Bryant and K.S. Anseth, Soc. Biomater. Trans. 24 (2001) p. 77.

    Google Scholar 

  15. S.J. Bryant, C.R. Nuttelman, and K.S. Anseth, J. Biomater. Sci. Polym. Ed. 11 (2000) p. 439.

    Article  CAS  Google Scholar 

  16. A.T. Metters, K.S. Anseth, and C.N. Bowman, J. Phys. Chem. B 104 (2000) p. 7043.

    Article  CAS  Google Scholar 

  17. C.G. Armstrong and V.C. Mow, J. Bone Joint Surg. Am. 64 (1982) p. 88.

    Article  CAS  Google Scholar 

  18. B. Kladny, P. Martus, K.H. Schiwy-Bochat, G. Weseloh, and B. Swoboda, Int. Orthop. 23 (1999) p. 264.

    Article  CAS  Google Scholar 

  19. S.J. Bryant and K.S. Anseth, Biomaterials 22 (2001) p. 619.

    Article  CAS  Google Scholar 

  20. J.E. Elisseeff, K. Anseth, D. Sims, M. Randolph, and R. Langer, Proc. Natl. Acad. Sci. U.S.A. 96 (1999) p. 3104.

    Article  CAS  Google Scholar 

  21. R. Woodburne and W. Burkel, Essentials of Human Anatomy (Oxford Press, Boca Raton, FL, 1994).

    Google Scholar 

  22. D.C. Svaldi Muggli, M.S. dissertation, University of Colorado, 1997.

    Google Scholar 

  23. S. Bryant, P. Martens, J. Elisseeff, M. Randolph, R. Langer, and K. Anseth, in Chemical and Physical Networks: Formation and Control of Properties, The Wiley Polymer Networks Group Review Series, Vol. 2, edited by B.T. Stokke and A. Elgsaeter (Wiley, New York, 1999) p. 395.

    CAS  Google Scholar 

  24. M.M. Urist, W.A. Maddox, J.E. Kennedy, and C.M. Balch, Cancer 51 (1988) p. 2152

    Article  Google Scholar 

  25. W.H. Lindsey, T.M. Masterson, W.D. Spotnitz, M.C. Wilhelm, and R.F. Morgan, Arch. Surg. 125 (1990) p. 305.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anseth, K.S., Burdick, J.A. New Directions in Photopolymerizable Biomaterials. MRS Bulletin 27, 130–136 (2002). https://doi.org/10.1557/mrs2002.49

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2002.49

Keywords

Navigation