Skip to main content
Log in

Arachnoid cell involvement in the mechanism of coagulation-initiated inflammation in the subarachnoid space after subarachnoid hemorrhage

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

To assess if arachnoid cells have the capability to present antigen and activate T-lymphocytes after stimulation by bloody cerebrospinal fluid (CSF), and to illuminate the mechanism of coagulation-initiated inflammation in the subarachnoid space after subarachnoid hemorrhage (SAH).

Methods

Arachnoid cells were cultured, characterized, and examined by immunofluorescence for the basal expression of human leukocyte antigen-DR (HLA-DR). Expression of HLA-DR, after co-culturing arachnoid cells in vitro with bloody CSF, was investigated by immunofluorescence and flow cytometry (FCM). The variation of arachnoid cells’ ultrastructure was observed by transmission electron microscope (TEM). Arachnoid cells were co-cultured with peripheral blood mononuclear cells (PBMCs). The content of soluble interleukin-2 receptor (sIL-2r) in culture medium was detected by enzyme-linked immunosorbent assay (ELISA).

Results

(1) Arachnoid cells were successfully cultured for many passages. The immunofluorescent staining was positive for HLA-DR in over 95% of the human arachnoid cells. The punctate HLA-DR was distributed in cytoplasm and not in the karyon. (2) After co-culturing arachnoid cells in vitro with bloody CSF, numerous particles with strong fluorescence appeared in the cytoplasm on Day 6. On Day 8, the quantity of particles and fluorescent intensity were maximal. FCM showed that the percentage of HLA-DR expressing cells was (2.5±0.4)% at the first 5 d, increasing to (60.8±3.6)% on Day 7. (3) After co-culturing arachnoid cells in vitro with bloody CSF, many lysosome and secondary lysosome particles were present in the cytoplasm. Hyperplasia of rough endoplasmic reticulum and enlarged cysts were observed, with numerous phagocytizing vesicles also observed at the edge of the arachnoid cells. (4) Arachnoid cells stimulated by bloody CSF were co-cultured in vitro with PBMCs. The content of sIL-2r in the culture medium, having been maintained at around 1.30 ng/ml during the first 3 d, had increased by Day 4. The content of sIL-2r peaked 7.53 ng/ml on Day 7 and then reduced gradually.

Conclusions

(1) Basic HLA-DR expression is present in arachnoid cells. (2) After stimulation by bloody CSF, arachnoid cells have the potential to serve as antigen presenting cells (APCs) and the ability to activate T-lymphocytes, indicating that arachnoid cells are involved in the mechanism of coagulation-initiated inflammation in the subarachnoid space after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, Y.M., Gajdusek, C., London, S., Moon, C.T., Oh, C.W., Mayberg, M.R., 2002. Sustained arterial narrowing after prolonged exposure to perivascular endothelin. Neurosurgery, 50(4):843–849. [doi:10.1097/00006123-2002040 00-00029]

    Article  PubMed  Google Scholar 

  • Akopov, S.E., Grigorian, M.R., Gabrielian, E.S., 1992. The endothelium-dependent relaxation of human middle cerebral arteries: effects of activated neutrophils. Cellular and Molecular Life Sciences, 48(1):34–36. [doi:10.1007/BF01923601]

    Article  CAS  Google Scholar 

  • André, P., Prasad, K.S., Denis, C.V., He, M., Papalia, J.M., Hynes, R.O., Phillips, D.R., Wagner, D.D., 2002. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nature Medicine, 8(3):247–252. [doi:10. 1038/nm0302-247]

    Article  PubMed  Google Scholar 

  • Aydin, M.D., Akyol-Salman, I., Sahin, O., 2005. Histopathological changes in ciliary ganglion of rabbits with subarachnoid hemorrhage. International Journal of Neuroscience, 115(11):1595–1602. [doi:10.1080/002074 50590958079]

    Article  PubMed  Google Scholar 

  • Bernstein, J.J., Karp, S.M., Goldberg, W.J., DeGiorgio, L.A., Blass, J.P., 1996. Human leptomeningeal-derived cells express GFAP and HLA-DR when grafted into rat spinal cord. International Journal of Developmental Neuroscience, 14(5):681–687. [doi:10.1016/0736-5748(95)00096-8]

    Article  CAS  PubMed  Google Scholar 

  • Chrapusta, S.J., Gorski, A., Mrowiec, T., Grieb, P., Andrychowski, J., Ryba, M.S., 1999. Tissue factor and factor VIIa receptor/ligand interactions induce proinflammatory effects in macrophages. Blood, 94(10):3413–3420.

    Google Scholar 

  • Chrapusta, S.J., Gorski, A., Mrowiec, T., Grieb, P., Andrychowski, J., Ryba, M.S., 2000. Immune abnormalities in aneurysmal subarachnoid haemorrhage patients: relation to delayed cerebral vasospasm. Scandinavian Journal of Immunology, 51(4):400–407. [doi:10.1046/j.1365-3083.2000.00694.x]

    Article  CAS  PubMed  Google Scholar 

  • Claassen, J., Bernardini, G.L., Kreiter, K., Bates, J., Du, Y.E., Copeland, D., Sander Connolly, E., Mayer, S.A., 2001. Effect of cisternal and ventricular blood on risk delayed cerebral ischemia after subarachnoid hemorrhage: the fisher scale revisited. Stroke, 32(9):2012–2016. [doi:10.1161/hs0901.095677]

    Article  CAS  PubMed  Google Scholar 

  • Clatterbuck, R.E., Oshiro, E.M., Hoffman, P.A., Dietsch, G.N., Pardoll, D.M., Tamargo, R.J., 2002. Inhibition of vasospasm with lymphocyte function-associated antigen-1 monoclonal antibody in a femoral artery model in rats. Journal of Neurosurgery, 97(3):676–682. [doi:10.3171/jns.2002.97.3.0676]

    Article  CAS  PubMed  Google Scholar 

  • Eddleman, C.S., Hurley, M.C., Naidech, A.M., 2009. Endovascular options in the treatment of delayed ischemic neurological deficits due to cerebral vasospasm. Neurosurgical Focus, 26(3):6–8. [doi:10.3171/2008.11.FOCUS 08278]

    Article  Google Scholar 

  • Esmon, C.T., 2005. The interactions between inflammation and coagulation. British Journal of Haematology, 131(4): 417–430. [doi:10.1111/j.1365-2141.2005.05753.x]

    Article  CAS  PubMed  Google Scholar 

  • Frank, E., 1995. HLA-DR expression on arachnoid cells. A role in the fibrotic inflammation surrounding nerve roots in spondylotic cervical myelopathy. Spine, 20(19):2093–2096. [doi:10.1097/00007632-199510000-00004]

    Article  CAS  PubMed  Google Scholar 

  • Frank, H., Boyce, W., 1983. Cytokeratin provides a specific marker for human arachnoid cells grown in vitro. Experimental Cell Research, 146(2):371–376. [doi:10.1016/0014-4827(83)90138-6]

    Article  CAS  PubMed  Google Scholar 

  • Gomis, P., Tran-Dinh, Y.R., Sercombe, C., Sercombe, R., 2005. Dexamethasone preventing contractile and cytoskeletal protein changes in the rabbit basilar artery after subarachnoid hemorrhage. Journal of Neurosurgery, 102(4):715–720. [doi:10.3171/jns.2005.102.4.0715]

    Article  CAS  PubMed  Google Scholar 

  • Harrod, C.G., Bendok, B.R., Batjer, H.H., 2005. Prediction of cerebral vasospasm in patients presenting with aneurysmal subarachnoid hemorrhage: a review. Neurosurgery, 56(4):633–654. [doi:10.1227/01.NEU.0000156644.45384.92]

    Article  PubMed  Google Scholar 

  • Hendryk, S., Jarzab, B., Josko, J., 2004. Increase of the IL-1 beta and IL-6 levels in CSF in patients with vasospasm following aneurysmal SAH. Neuroendocrinology Letters, 25(1/2):141–147.

    CAS  PubMed  Google Scholar 

  • Iuliano, B.A., Pluta, R.M., Jung, C., 2004. Endothelial dysfunction in a primate model of cerebral vasospasm. Journal of Neurosurgery, 100(2):287–295. [doi:10.3171/jns.2004.100.2.0287]

    Article  PubMed  Google Scholar 

  • Jackowski, A., Crockard, A., Burnstock, G., Russell, R.R., Kristek, F., 1990. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. Journal of Cerebral Blood Flow & Metabolism, 10(6):835–849.

    CAS  Google Scholar 

  • Jin, H., Gong, D., Adeegbe, D., Bayer, A.L., Rolle, C., Yu, A., Malek, T.R., 2006. Quantitative assessment concerning the contribution of IL-2Rβ for superantigen-mediated T cell responses in vivo. International Immunology, 18(4): 565–572. [doi:10.1093/intimm/dxh398]

    Article  CAS  PubMed  Google Scholar 

  • Kim, K.Y., Kim, M.Y., Choi, H.S., 2002. Thrombin induces IL-10 production in microglia as a negative feedback regulator of TNF-α release. NeuroReport, 13(6):849–852. [doi:10.1097/00001756-200205070-00022]

    Article  CAS  PubMed  Google Scholar 

  • Kubota, T., Handa, Y., Tsuchida, A., Kaneko, M., Kobayashi, H., Kubota, T., 1993. The kinetics of lymphocyte subsets and macrophages in subarachnoid space after subarachnoid hemorrhage in rats. Stroke, 24(12):1993–2000.

    CAS  PubMed  Google Scholar 

  • Kwon, K.Y., Jeon, B.C., 2001. Cytokine levels in cerebrospinal fluid and delayed ischemic deficits (DCI) in patients with aneurysmal subarachnoid hemorrhage. Journal of Korean Medical Science, 16(4):774–780 (in Korean).

    CAS  PubMed  Google Scholar 

  • Lan, W., Harmon, D.C., Wang, J.H., 2005. Activated endothelial interleukin-1, -6, and -8 concentrations and intercellular adhesion molecule-1 expression are attenuated by lidocaine. Anesthesia & Analgesia, 100(2):409–412. [doi: 10.1213/01.ANE.0000142113.39092.87]

    Article  CAS  Google Scholar 

  • Massicotte, E.M., Del Bigio, M.R., 1999. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. Journal of Neurosurgery, 91(1):80–84. [doi:10.3171/jns.1999.91.1.0080]

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen, T., Lefvert, A.K., 1996. Cerebrospinal fluid and blood lymphocyte subpopulations following subarachnoid haemorrhage. British Journal of Neurosurgery, 10(1):89–92. [doi:10.1080/02688699650040584]

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen, T., Andersson, B., Loftenius, A., von Holst, H., 1993. Increased interleukin-6 levels in cerebrospinal fluid following subarachnoid hemorrhage. Journal of Neurosurgery, 78(4):562–567. [doi:10.3171/jns.1993.78.4.0562]

    Article  CAS  PubMed  Google Scholar 

  • McMenamin, P.G., 1999. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. The Journal of Comparative Neurology, 405(4):553–562. [doi:10. 1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.3.CO;2-Y]

    Article  CAS  PubMed  Google Scholar 

  • McMenamin, P.G., Wealthall, R.J., Deverall, M., Cooper, S.J., Griffin, B., 2003. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy. Cell and Tissue Research, 313(3):259–269. [doi:10.1007/s00441-003-0779-0]

    Article  PubMed  Google Scholar 

  • Motohashi, O., Suzuki, M., Shida, N., Umezawa, K., Ohtoh, T., Sakurai, Y., Yoshimoto, T., 1995a. Subarachnoid haemorrhage induced proliferation of leptomeningeal cells and deposition of extracellular matrices in the arachnoid granulations and subarachnoid space. Acta Neurochirurgica, 136(1/2):88–91. [doi:10.1007/BF01411441]

    Article  CAS  PubMed  Google Scholar 

  • Motohashi, O., Suzuki, M., Yanai, N., Umezawa, K., Shida, N., Yoshimoto, T., 1995b. Thrombin and TGF-beta promote human leptomeningeal cell proliferation in vitro. Neuroscience Letters, 190(2):105–108. [doi:10.1016/0304-3940 (95)11513-V]

    Article  CAS  PubMed  Google Scholar 

  • Murphy, M., Chen, J.N., George, D.L., 1991. Establishment and characterization of a human leptomeningeal cell line. Journal of Neuroscience Research, 30(3):475–483. [doi: 10.1002/jnr.490300304]

    Article  CAS  PubMed  Google Scholar 

  • Muth, H., Kreis, I., Zimmermann, R., Tillmanns, H., Hölschermann, H., 2005. Differential gene expression in activated monocyte-derived macrophages following binding of factor VIIa to tissue factor. Thrombosis and Haemostasis, 94(5):1028–1034.

    CAS  PubMed  Google Scholar 

  • Nekludov, M., Antovic, J., Bredbacka, S., Blombäck, M., 2007. Coagulation abnormalities associated with severe isolated traumatic brain injury: cerebral arterio-venous differences in coagulation and inflammatory markers. Journal of Neurotrauma, 24(1):174–180. [doi:10.1089/neu.2006.0173]

    Article  PubMed  Google Scholar 

  • Ogihara, K., Aoki, K., Zubkov, A.Y., Zhang, J.H., 2001. Oxyhemoglobin produces apoptosis and necrosis in cultured smooth muscle cells. Brain Research, 889(1–2):89–97. [doi:10.1016/S0006-8993(00)03120-6]

    Article  CAS  PubMed  Google Scholar 

  • Pradilla, G., Wang, P.P., Legnani, F.G., 2004. Prevention of vasospasm by anti-CD11/CD18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. Journal of Neurosurgery, 101(1):88–92. [doi:10.3171/jns. 2004.101.1.0088]

    Article  CAS  PubMed  Google Scholar 

  • Prignano, F., 1998. Immunophenotype analysis of normal human dendritic cells isolated from epidermis and dermis. International Journal of Dermatology, 37(2):116–119. [doi:10.1046/j.1365-4362.1998.00116.x]

    Article  CAS  PubMed  Google Scholar 

  • Raymackers, J., Daniels, A., de Brabandere, V., Missiaen, C., Dauwe, M., Verhaert, P., Vanmechelen, E., 2000. Identification of two-dimensionally separated human cerebrospinal fluid proteins by N-terminal sequencing, matrix-assisted laser desorption/ionization-mass spectrometry, nanoliquid chromatography-electrospray ionization-time of flight-mass spectrometry, and tandem mass spectrometry. Electrophoresis, 21(11):2266–2283. [doi:10. 1002/1522-2683(20000601)21:11<2266::AID-ELPS2266>3.0.CO;2-Z]

    Article  CAS  PubMed  Google Scholar 

  • Recinos, P.F., Pradilla, G., Thai, Q.A., 2006. Controlled release of lipopolysaccharide in the subarachnoid space of rabbits induces chronic vasospasm in the absence of blood. Surgical Neurology, 66(5):463–469. [doi:10.1016/j.surneu.2006.04.010]

    Article  PubMed  Google Scholar 

  • Sanchez, C.M., Suarez, M.A., Nebra, A., 2004. Early activation of coagulation and fibrinolysis in traumatic brain injury and spontaneous intracerebral hemorrhage: a comparative study. Neurologia, 19(2):44–52.

    CAS  PubMed  Google Scholar 

  • Stein, S.C., Smith, D.H., 2004. Coagulapathy in traumatic brain injury. Neurocritical Care, 1(4):479–488. [doi:10. 1385/NCC:1:4:479]

    Article  PubMed  Google Scholar 

  • Takizawa, T., Tada, T., Kitazawa, K., 2001. Inflammatory cytokine cascade released by leukocytes in cerebrospinal fluid after subarachnoid hemorrhage. Neurological Research, 23(7):724–730. [doi:10.1179/016164101101199 243]

    Article  CAS  PubMed  Google Scholar 

  • Todo, K., Kitagawa, K., Sasaki, T., Omura-Matsuoka, E., Terasaki, Y., Oyama, N., Yagita, Y., Hori, M., 2008. Granulocyte-macrophage colony-stimulating factor enhances leptomeningeal collateral growth induced by common carotid artery occlusion. Stroke, 39(6):1875–1882. [doi:10.1161/STROKEAHA.107.503433]

    Article  CAS  PubMed  Google Scholar 

  • Wada, H., Hashimoto, K., Wada, Y., Kobayashi, M., Izumi, A., Sugiyama, A., Kohro, T., Hamakubo, T., Kodama, T., 2002. Extensive oligonucleotide microarray transcriptome analysis of the rat cerebral artery and arachnoid tissue. Journal of Atherosclerosis and Thrombosis, 9(5): 224–232.

    CAS  PubMed  Google Scholar 

  • Wang, L., Shi, J.X., Yin, H.X., 2005. The influence of subarachnoid hemorrhage on neurons: an animal model. Annals of Clinical and Laboratory Science, 35(1):79–85.

    PubMed  Google Scholar 

  • Zubkov, A.Y., Tibbs, R.E., Clower, B., 2002. Morphological changes of cerebral arteries in a canine double hemorrhage model. Neuroscience Letters, 326(2):137–143. [doi:10.1016/S0304-3940(02)00188-X]

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-liang Xin.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30370497) and the Science and Technology Research Program of Zhejiang Province, China (No. 2007-C-33039)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xin, Zl., Wu, Xk., Xu, Jr. et al. Arachnoid cell involvement in the mechanism of coagulation-initiated inflammation in the subarachnoid space after subarachnoid hemorrhage. J. Zhejiang Univ. Sci. B 11, 516–523 (2010). https://doi.org/10.1631/jzus.B1000099

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1000099

Key words

CLC number

Navigation