Skip to main content
Log in

Metabolic remodeling in chronic heart failure

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Although the management of chronic heart failure (CHF) has made enormous progress over the past decades, CHF is still a tremendous medical and societal burden. Metabolic remodeling might play a crucial role in the pathophysiology of CHF. The characteristics and mechanisms of metabolic remodeling remained unclear, and the main hypothesis might include the changes in the availability of metabolic substrate and the decline of metabolic capability. In the early phases of the disease, metabolism shifts toward carbohydrate utilization from fatty acids (FAs) oxidation. Along with the progress of the disease, the increasing level of the hyperadrenergic state and insulin resistance cause the changes that shift back to a greater FA uptake and oxidation. In addition, a growing body of experimental and clinical evidence suggests that the improvement in the metabolic capability is likely to be more significant than the selection of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abozguia, K., Clarke, K., Lee, L., Frenneaux, M., 2006. Modification of myocardial substrate use as a therapy for heart failure. Nat. Clin. Pract. Cardiovasc. Med., 3(9): 490–498. [doi:10.1038/ncpcardio0583]

    Article  PubMed  CAS  Google Scholar 

  • Abozguia, K., Shivu, G.N., Ahmed, I., Phan, T.T., Frenneaux, M.P., 2009. The heart metabolism: pathophysiological aspects in ischaemia and heart failure. Curr. Pharm. Des., 15(8):827–835. [doi:10.2174/138161209787582101]

    Article  PubMed  CAS  Google Scholar 

  • Arany, Z., He, H., Lin, J., Hoyer, K., Handschin, C., Toka, O., Ahmad, F., Matsui, T., Chin, S., Wu, P.H., et al., 2005. Transcriptional coactivator PGC-1α controls the energy state and contractile function of cardiac muscle. Cell Metab., 1(4):259–271. [doi:10.1016/j.cmet.2005.03.002]

    Article  PubMed  CAS  Google Scholar 

  • Ardehali, H., Sabbah, H.N., Burke, M.A., Sarma, S., Liu, P.P., Cleland, J.G., Maggioni, A., Fonarow, G.C., Abel, E.D., Campia, U., et al., 2012. Targeting myocardial substrate metabolism in heart failure: potential for new therapies. Eur. J. Heart Fail., 14(2):120–129. [doi:10.1093/eurjhf/ hfr173]

    Article  PubMed  CAS  Google Scholar 

  • Ashrafian, H., Frenneaux, M.P., 2007. Metabolic modulation in heart failure: the coming of age. Cardiovasc. Drugs Ther., 21(1):5–7. [doi:10.1007/s10557-007-6000-z]

    Article  PubMed  Google Scholar 

  • Azevedo, P.S., Minicucci, M.F., Santos, P.P., Paiva, S.A., Zornoff, L.A., 2013. Energy metabolism in cardiac remodeling and heart failure. Cardiol. Rev., 21(3): 135–140. [doi:10.1097/CRD.0b013e318274956d]

    Article  PubMed  Google Scholar 

  • Azizi-Namini, P., Ahmed, M., Yan, A.T., Keith, M., 2012. The role of B vitamins in the management of heart failure. Nutr. Clin. Pract., 27(3):363–374. [doi:10.1177/0884533 612444539]

    Article  PubMed  Google Scholar 

  • Beauloye, C., Bertrand, L., Horman, S., Hue, L., 2011. AMPK activation, a preventive therapeutic target in the transition from cardiac injury to heart failure. Cardiovasc. Res., 90(2):224–233. [doi:10.1093/cvr/cvr034]

    Article  PubMed  CAS  Google Scholar 

  • Beer, M., Seyfarth, T., Sandstede, J., Landschutz, W., Lipke, C., Köstler, H., von Kienlin, M., Harre, K., Hahn, D., Neubauer, S., 2002. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J. Am. Coll. Cardiol., 40(7):1267–1274. [doi:10.1016/ S0735-1097(02)02160-5]

    Article  PubMed  CAS  Google Scholar 

  • Cleland, J.G.F., Daubert, J.C., Erdmann, E., Freemantle, N., Gras, D., Kappenberger, L., Tavazzi, L., 2005. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med., 352(15):1539–1549. [doi:10.1056/NEJMoa050496]

    Article  PubMed  CAS  Google Scholar 

  • Dávila-Román, V.G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J.G., Kelly, D.P., Gropler, R.J., 2002. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol., 40(2):271–277. [doi:10.1016/S0735-1097(02)01967-8]

    Article  PubMed  Google Scholar 

  • Decherd, G., Visscher, M.B., 1934. Energy metabolism of the failing heart. J. Exp. Med., 59(2):195–199.

    Article  PubMed  CAS  Google Scholar 

  • de las Fuentes, L., Herrero, P., Peterson, L.R., Kelly, D.P., Gropler, R.J., Dávila-Román, V.G., 2003. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension, 41(1):83–87. [doi:10.1161/01.HYP. 0000047668.48494.39]

    Article  PubMed  Google Scholar 

  • Dhalla, N.S., Saini-Chohan, H.K., Rodriguez-Leyva, D., Elimban, V., Dent, M.R., Tappia, P.S., 2009. Subcellular remodelling may induce cardiac dysfunction in congestive heart failure. Cardiovasc. Res., 81(3):429–438. [doi:10.1093/cvr/cvn281]

    Article  PubMed  CAS  Google Scholar 

  • Dillon, L.M., Rebelo, A.P., Moraes, C.T., 2012. The role of PGC-1 coactivators in aging skeletal muscle and heart. IUBMB. Life, 64(3):231–241. [doi:10.1002/iub.608]

    Article  PubMed  CAS  Google Scholar 

  • Dinicolantonio, J.J., Lavie, C.J., Fares, H., Menezes, A.R., O’Keefe, J.H., 2013. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc., 88(6):544–551. [doi:10.1016/j.mayocp.2013.02.007]

    Article  PubMed  CAS  Google Scholar 

  • Doenst, T., Abel, E.D., 2011. Spotlight on metabolic remodelling in heart failure. Cardiovasc. Res., 90(2): 191–193. [doi:10.1093/cvr/cvr077]

    Article  PubMed  CAS  Google Scholar 

  • Finck, B.N., Kelly, D.P., 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest., 116(3):615–622. [doi:10.1172/JCI27794]

    Article  PubMed  CAS  Google Scholar 

  • Giordano, F.J., 2005. Oxygen, oxidative stress, hypoxia, and heart failure. J. Clin. Invest., 115(3):500–508. [doi:10. 1172/JCI24408]

    PubMed  CAS  Google Scholar 

  • Hanninen, S.A., Darling, P.B., Sole, M.J., Barr, A., Keith, M.E., 2006. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. J. Am. Coll. Cardiol., 47(2):354–361. [doi:10.1016/j.jacc.2005. 08.060]

    Article  PubMed  CAS  Google Scholar 

  • Hesselink, M.K., Schrauwen, P., 2005. Uncoupling proteins in the failing human heart: friend or foe? Lancet, 365(9457): 385–386. [doi:10.1016/S0140-6736(05)17823-4]

    PubMed  Google Scholar 

  • Hirsch, G.A., Bottomley, P.A., Gerstenblith, G., Weiss, R.G., 2012. Allopurinol acutely increases adenosine triphospate energy delivery in failing human hearts. J. Am. Coll. Cardiol., 59(9):802–808. [doi:10.1016/j.jacc.2011.10.895]

    Article  PubMed  CAS  Google Scholar 

  • Hunt, S.A., Abraham, W.T., Chin, M.H., Feldman, A.M., Francis, G.S., Ganiats, T.G., Jessup, M., Konstam, M.A., Mancini, D.M., Michl, K., et al., 2009. 2009 focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines developed in collaboration with the International Society for Heart and Lung Transplantation. J. Am. Coll. Cardiol., 53(15):e1–e90. [doi:10.1016/j.jacc.2008.11.013]

    Article  PubMed  Google Scholar 

  • Huss, J.M., Kelly, D.P., 2005. Mitochondrial energy metabolism in heart failure: a question of balance. J. Clin. Invest., 115(3):547–555. [doi:10.1172/JCI24405]

    PubMed  CAS  Google Scholar 

  • Karamanlidis, G., Nascimben, L., Couper, G.S., Shekar, P.S., del Monte, F., Tian, R., 2010. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ. Res., 106(9):1541–1548. [doi:10.1161/circresaha. 109.212753]

    Article  PubMed  CAS  Google Scholar 

  • Karbowska, J., Kochan, Z., Smolenski, R.T., 2003. Peroxisome proliferator-activated receptor α is downregulated in the failing human heart. Cell Mol. Biol. Lett., 8(1):49–53.

    PubMed  CAS  Google Scholar 

  • Kehat, I., Molkentin, J.D., 2010. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation, 122(25):2727–2735. [doi:10. 1161/CIRCULATIONAHA.110.942268]

    Article  PubMed  Google Scholar 

  • Kemp, C.D., Conte, J.V., 2012. The pathophysiology of heart failure. Cardiovasc. Pathol., 21(5):365–371. [doi:10. 1016/j.carpath.2011.11.007]

    Article  PubMed  CAS  Google Scholar 

  • Kolwicz, S.C.Jr., Tian, R., 2011. Glucose metabolism and cardiac hypertrophy. Cardiovasc. Res., 90(2):194–201. [doi:10.1093/cvr/cvr071]

    Article  PubMed  CAS  Google Scholar 

  • Lai, L., Leone, T.C., Zechner, C., Schaeffer, P.J., Kelly, S.M., Flanagan, D.P., Medeiros, D.M., Kovacs, A., Kelly, D.P., 2008. Transcriptional coactivators PGC-1α and PGC-1β control overlapping programs required for perinatal maturation of the heart. Genes. Dev., 22(14):1948–1961. [doi:10.1101/gad.1661708]

    Article  PubMed  CAS  Google Scholar 

  • Ledderose, C., Kreth, S., Beiras-Fernandez, A., 2011. Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function. Recent Pat. Endocr. Metab. Immune Drug Discov., 5(1):1–6. [doi:10.2174/ 187221411794351897]

    Article  PubMed  CAS  Google Scholar 

  • Lionetti, V., Stanley, W.C., Recchia, F.A., 2011. Modulating fatty acid oxidation in heart failure. Cardiovasc. Res., 90(2):202–209. [doi:10.1093/cvr/cvr038]

    Article  PubMed  CAS  Google Scholar 

  • Marsin, A.S., Bertrand, L., Rider, M.H., Deprez, J., Beauloye, C., Vincent, M.F., van den Berghe, G., Carling, D., Hue, L., 2000. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol., 10(20):1247–1255. [doi:10. 1016/S0960-9822(00)00742-9]

    Article  PubMed  CAS  Google Scholar 

  • Martin, M.A., Gomez, M.A., Guillen, F., Bornstein, B., Campos, Y., Rubio, J.C., de la Calzada, C.S., Arenas, J., 2000. Myocardial carnitine and carnitine palmitoyltransferase deficiencies in patients with severe heart failure. Biochim. Biophys. Acta Mol. Basis Dis., 1502(3):330–336. [doi:10.1016/S0925-4439(00)00061-2]

    Article  CAS  Google Scholar 

  • McMurray, J.J., Adamopoulos, S., Anker, S.D., Auricchio, A., Bohm, M., Dickstein, K., Falk, V., Filippatos, G., Fonseca, C., Gomez-Sanchez, M.A., et al., 2012. ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012. Eur. Heart J., 33(14): 1787–1847. [doi:10.1093/eurheartj/ehs104]

    Article  PubMed  Google Scholar 

  • Murray, A.J., Edwards, L.M., Clarke, K., 2007. Mitochondria and heart failure. Curr. Opin. Clin. Nutr. Metab. Care, 10(6):704–711. [doi:10.1097/MCO.0b013e3282f0ecbe]

    Article  PubMed  CAS  Google Scholar 

  • Nagoshi, T., Yoshimura, M., Rosano, G.M., Lopaschuk, G.D., Mochizuki, S., 2011. Optimization of cardiac metabolism in heart failure. Curr. Pharm. Des., 17(35):3846–3853.

    Article  PubMed  CAS  Google Scholar 

  • Neubauer, S., 2007. The failing heart-an engine out of fuel. N. Engl. J. Med., 356(11):1140–1151. [doi:10.1056/ NEJMra063052]

    Article  PubMed  Google Scholar 

  • Neubauer, S., Horn, M., Cramer, M., Harre, K., Newell, J.B., Peters, W., Pabst, T., Ertl, G., Hahn, D., Ingwall, J.S., et al., 1997. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation, 96(7):2190–2196. [doi:10.1161/ 01.CIR.96.7.2190]

    Article  PubMed  CAS  Google Scholar 

  • Opie, L.H., 2012. Allopurinol for heart failure: novel mechanisms. J. Am. Coll. Cardiol., 59(9):809–812. [doi:10.1016/j.jacc.2011.09.072]

    Article  PubMed  CAS  Google Scholar 

  • Opie, L.H., Knuuti, J., 2009. The adrenergic-fatty acid load in heart failure. J. Am. Coll. Cardiol., 54(18):1637–1646. [doi:10.1016/j.jacc.2009.07.024]

    Article  PubMed  CAS  Google Scholar 

  • Opie, L.H., Commerford, P.J., Gersh, B.J., Pfeffer, M.A., 2006. Controversies in ventricular remodelling. Lancet, 367(9507):356–367. [doi:10.1016/s0140-6736(06)68074-4]

    Article  PubMed  Google Scholar 

  • Paolisso, G., Gambardella, A., Galzerano, D., D’Amore, A., Rubino, P., Verza, M., Teasuro, P., Varricchio, M., D’Onofrio, F., 1994. Total-body and myocardial substrate oxidation in congestive heart failure. Metabolism, 43(2): 174–179 [doi:10.1016/0026-0495(94)90241-0]

    Article  PubMed  CAS  Google Scholar 

  • Petersen, K.F., Shulman, G.I., 2006. Etiology of insulin resistance. Am. J. Med., 119(5S1):S10–S16. [doi:10.1016/ j.amjmed.2006.01.009]

    Article  PubMed  Google Scholar 

  • Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J., Gatlin, M., et al., 2003. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med., 348(14): 1309–1321. [doi:10.1056/NEJMoa030207]

    Article  PubMed  CAS  Google Scholar 

  • Rajabi, M., Kassiotis, C., Razeghi, P., Taegtmeyer, H., 2007. Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail. Rev., 12(3–4): 331–343. [doi:10.1007/s10741-007-9034-1]

    Article  PubMed  CAS  Google Scholar 

  • Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., 1963. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 281(7285):785–789.

    Google Scholar 

  • Razeghi, P., Young, M.E., Alcorn, J.L., Moravec, C.S., Frazier, O.H., Taegtmeyer, H., 2001. Metabolic gene expression in fetal and failing human heart. Circulation, 104(24): 2923–2931. [doi:10.1161/hc4901.100526]

    Article  PubMed  CAS  Google Scholar 

  • Recchia, F.A., McConnell, P.I., Bernstein, R.D., Vogel, T.R., Xu, X., Hintze, T.H., 1998. Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ. Res., 83(10):969–979. [doi:10.1161/ 01.RES.83.10.969]

    Article  PubMed  CAS  Google Scholar 

  • Riehle, C., Abel, E.D., 2012. PGC-1 proteins and heart failure. Trends Cardiovasc. Med., 22(4):98–105. [doi:10.1016/ j.tcm.2012.07.003]

    Article  PubMed  CAS  Google Scholar 

  • Rosano, G.M., Fini, M., Caminiti, G., Barbaro, G., 2008. Cardiac metabolism in myocardial ischemia. Curr. Pharm. Des., 14(25):2551–2562. [doi:10.2174/138161 208786071317]

    Article  PubMed  CAS  Google Scholar 

  • Rosca, M.G., Hoppel, C.L., 2010. Mitochondria in heart failure. Cardiovasc. Res., 88(1):40–50. [doi:10.1093/cvr/ cvq240]

    Article  PubMed  CAS  Google Scholar 

  • Rowe, G.C., Jiang, A., Arany, Z., 2010. PGC-1 coactivators in cardiac development and disease. Circ. Res., 107(7): 825–838. [doi:10.1161/CIRCRESAHA.110.223818]

    Article  PubMed  CAS  Google Scholar 

  • Sabbah, H.N., Sharov, V.G., Goldstein, S., 2000. Cell death, tissue hypoxia and the progression of heart failure. Heart Fail. Rev., 5(2):131–138. [doi:10.1023/A:1009880720032]

    Article  PubMed  CAS  Google Scholar 

  • Sarma, S., Ardehali, H., Gheorghiade, M., 2012. Enhancing the metabolic substrate: PPAR-α agonists in heart failure. Heart Fail. Rev., 17(1):35–43. [doi:10.1007/s10741-010-9208-0]

    Article  PubMed  CAS  Google Scholar 

  • Shah, A.M., Mann, D.L., 2011. In search of new therapeutic targets and strategies for heart failure: recent advances in basic science. Lancet, 378(9792):704–712. [doi:10. 1016/s0140-6736(11)60894-5]

    Article  PubMed  CAS  Google Scholar 

  • Sihag, S., Cresci, S., Li, A.Y., Sucharov, C.C., Lehman, J.J., 2009. PGC-1α and ERRα target gene downregulation is a signature of the failing human heart. J. Mol. Cell Cardiol., 46(2):201–212. [doi:10.1016/j.yjmcc.2008.10.025]

    Article  PubMed  CAS  Google Scholar 

  • Sisakian, H., Torgomyan, A., Barkhudaryan, A., 2007. The effect of trimetazidine on left ventricular systolic function and physical tolerance in patients with ischaemic cardiomyopathy. Acta Cardiol., 62(5):493–499.

    Article  PubMed  Google Scholar 

  • Stanley, W.C., Recchia, F.A., Lopaschuk, G.D., 2005. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev., 85(3):1093–1129. [doi:10. 1152/physrev.00006.2004]

    Article  PubMed  CAS  Google Scholar 

  • Taegtmeyer, H., Ballal, K., 2006. No low-fat diet for the failing heart? Circulation, 114(20):2092–2093. [doi:10.1161/CIRCULATIONAHA.106.659235]

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M., Wallhaus, T.R., Degrado, T.R., Russell, D.C., Stanko, P., Nickles, R.J., Stone, C.K., 2001. An evaluation of myocardial fatty acid and glucose uptake using pet with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J. Nucl. Med., 42(1):55–62.

    PubMed  CAS  Google Scholar 

  • Tsutsui, H., Kinugawa, S., Matsushima, S., 2011. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol., 301(6):H2181–H2190. [doi:10.1152/ajpheart. 00554.2011]

    Article  PubMed  CAS  Google Scholar 

  • Turer, A.T., Malloy, C.R., Newgard, C.B., Podgoreanu, M.V., 2010. Energetics and metabolism in the failing heart: important but poorly understood. Curr. Opin. Clin. Nutr. Metab. Care, 13(4):458–465. [doi:10.1097/MCO.0b013e 32833a55a5]

    Article  PubMed  Google Scholar 

  • Tuunanen, H., Knuuti, J., 2011. Metabolic remodelling in human heart failure. Cardiovasc. Res., 90(2):251–257. [doi:10.1093/cvr/cvr052]

    Article  PubMed  CAS  Google Scholar 

  • Tuunanen, H., Engblom, E., Naum, A., Scheinin, M., Nagren, K., Airaksinen, J., Nuutila, P., Iozzo, P., Ukkonen, H., Knuuti, J., 2006a. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J. Card. Fail., 12(8):644–652. [doi:10.1016/j.cardfail.2006.06.005]

    Article  PubMed  CAS  Google Scholar 

  • Tuunanen, H., Engblom, E., Naum, A., Nagren, K., Hesse, B., Airaksinen, K.E., Nuutila, P., Iozzo, P., Ukkonen, H., Opie, L.H., et al., 2006b. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation, 114(20):2130–2137. [doi:10. 1161/CIRCULATIONAHA.106.645184]

    Article  PubMed  CAS  Google Scholar 

  • Vadvalkar, S.S., Baily, C.N., Matsuzaki, S., West, M., Tesiram, Y.A., Humphries, K.M., 2013. Metabolic inflexibility and protein lysine acetylation in heart mitochondria of a chronic model of type 1 diabetes. Biochem. J., 449(1): 253–261. [doi:10.1042/BJ20121038]

    Article  PubMed  CAS  Google Scholar 

  • van Bilsen, M., van Nieuwenhoven, F.A., van der Vusse, G.J., 2009. Metabolic remodelling of the failing heart: beneficial or detrimental? Cardiovasc. Res., 81(3): 420–428. [doi:10.1093/cvr/cvn282]

    Article  PubMed  Google Scholar 

  • Ventura-Clapier, R., Garnier, A., Veksler, V., 2004. Energy metabolism in heart failure. J. Physiol., 555(Pt1):1–13. [doi:10.1113/jphysiol.2003.055095]

    PubMed  CAS  Google Scholar 

  • Ventura-Clapier, R., Garnier, A., Veksler, V., Joubert, F., 2011. Bioenergetics of the failing heart. Biochim. Biophys. Acta, 1813(7):1360–1372. [doi:10.1016/j.bbamcr.2010.09.006]

    Article  PubMed  CAS  Google Scholar 

  • Wooley, J.A., 2008. Characteristics of thiamin and its relevance to the management of heart failure. Nutr. Clin. Pract., 23(5):487–493. [doi:10.1177/0884533608323430]

    Article  PubMed  Google Scholar 

  • Yan, J., Young, M.E., Cui, L., Lopaschuk, G.D., Liao, R., Tian, R., 2009. Increased glucose uptake and oxidation in mouse hearts prevent high fatty acid oxidation but cause cardiac dysfunction in diet-induced obesity. Circulation, 119(21):2818–2828. [doi:10.1161/CIRCULATIONAHA. 108.832915]

    Article  PubMed  CAS  Google Scholar 

  • Zannad, F., McMurray, J.J., Krum, H., van Veldhuisen, D.J., Swedberg, K., Shi, H., Vincent, J., Pocock, S.J., Pitt, B., Group, E.H.S., 2011. Eplerenone in patients with systolic heart failure and mild symptoms. N. Engl. J. Med., 364(1):11–21. [doi:10.1056/NEJMoa1009492]

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Lu, Y., Jiang, H., Zhang, L., Sun, A., Zou, Y., Ge, J., 2012. Additional use of trimetazidine in patients with chronic heart failure: a meta-analysis. J. Am. Coll. Cardiol., 59(10):913–922. [doi:10.1016/j.jacc.2011.11.027]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Guo, T. Metabolic remodeling in chronic heart failure. J. Zhejiang Univ. Sci. B 14, 688–695 (2013). https://doi.org/10.1631/jzus.B1300137

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1300137

Key words

CLC number

Navigation