Skip to main content
Log in

Clinically Significant Drug Interactions with Antituberculosis Agents

  • Review Articles
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Standard short-course regimens for tuberculosis are used worldwide with very few problems. Unfortunately, the emergence of multiple drug-resistant tuberculosis in many parts of the world is leading to a diversification of drug regimens and to the use of drugs that are more toxic per se and more likely to interact with others. In addition, the treatment of HIV/AIDS patients with tuberculosis or disease due to Mycobacterium avium-intracellulare complex (MAC) infection with new drugs and multidrug regimens has added to the problem of drug interactions, especially as such patients may often be receiving concomitant treatment for a range of bacterial, fungal and viral infections.

In general, there are very few clinically significant interactions between the first-line antituberculosis drugs themselves, although problems of bioavailability, notably of rifampicin (rifampin), have been encountered in the manufacture of combination tablets.

Of the first-line drugs used to treat tuberculosis, i.e. rifampicin, isoniazid and pyrazinamide, rifampicin is particularly likely to cause clinically significant drug interactions as it is a potent inducer of the cytochrome P450 enzyme group, which is involved in the metabolism of many drugs, in particular oral contraceptives, corticosteroids, oral anticoagulants and cyclosporin. The use of quinolones to treat multiple drug-resistant tuberculosis and AIDS-related MAC disease raises further problems of drug interactions as, in contrast to rifampicin, these drugs inhibit some cytochrome isoenzymes, leading to reduced metabolism of certain drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schatz A, Waksman SA. Effect of streptomycin and other antibiotic substances upon Mycobacterium tuberculosis and related organisms. Proc Soc Exp Biol Med 1944; 57: 244–8

    CAS  Google Scholar 

  2. Stanford JL, Grange JM. New concepts for the control of tuberculosis in the twenty first century. J R Coll Physicians Lond 1993; 27: 218–23

    PubMed  CAS  Google Scholar 

  3. Mitchison DA. The action of antituberculosis drugs in short course chemotherapy. Tubercle 1985; 66: 219–25

    Article  PubMed  CAS  Google Scholar 

  4. World Health Organization. WHO model prescribing information. Drugs used in mycobacterial diseases. Geneva: WHO, 1991

    Google Scholar 

  5. Chan SL. Chemotherapy of tuberculosis. In: Davies PDO, editor. Clinical tuberculosis. London: Chapman and Hall, 1994: 141–56

    Google Scholar 

  6. Bloom BR, Murray CJL. Tuberculosis: commentary on a reemergent killer. Science 1992; 257: 1055–64

    Article  PubMed  CAS  Google Scholar 

  7. Dooley SW, Simone PM. The extent and management of drugresistant tuberculosis: the American experience. In: Davies PDO, editor. Clinical tuberculosis. London: Chapman and Hall, 1994: 171–89

    Google Scholar 

  8. Pitchenik AE, Fertel D. Medical management of AIDS patients: Tuberculosis and nontuberculous mycobacterial disease. Med Clin North Am 1992; 76: 121–71

    PubMed  CAS  Google Scholar 

  9. Dautzenberg B, Truffot C, Mignon A, et al. Rifabutin in combination with clofazimine, isoniazid and ethambutol in the treatment of AIDS patients with infections due to opportunist mycobacteria. Tubercle 1991; 72: 168–75

    Article  PubMed  CAS  Google Scholar 

  10. Jacobson M, Yajko D, Northfelt D, et al. Randomised placebocontrolled trial of rifampin, ethambutol and Ciprofloxacin for AIDS patients with disseminated Mycobacterium avium complex infection. J Infect Dis 1993; 168: 112–9

    Article  PubMed  CAS  Google Scholar 

  11. Fox W. Drug combinations and the bioavailability of rifampicin. Tubercle 1990; 71: 241–5

    Article  PubMed  CAS  Google Scholar 

  12. Ellard GA. The potential clinical significance of the isoniazid acetylator phenotype in the treatment of pulmonary tuberculosis. Tubercle 1984; 65: 211–7

    Article  PubMed  CAS  Google Scholar 

  13. Danysz A, Wisniewski K. Control of drug transport through cell membranes. Mater Med Pol 1970; 2: 35–44

    Google Scholar 

  14. Sarma GR, Kailsam S, Nair NG, et al. Effect of prednisolone and rifampicin on isoniazid metabolism in slow and rapid inactivators of isoniazid. Antimicrob Agents Chemother 1980; 18: 661–6

    Article  PubMed  CAS  Google Scholar 

  15. Gugler R, Allgayer H. Effects of antacids on the clinical pharmacokinetics of drugs: an update. Clin Pharmacokinet 1990; 18: 210–9

    Article  PubMed  CAS  Google Scholar 

  16. Patsalos PN, Duncan JS. Antiepileptic drugs. A review of clinically significant drug interactions. Drug Saf 1993; 9: 156–84

    Article  PubMed  CAS  Google Scholar 

  17. Mazze RI, Woodruff RE, Heert ME. Isoniazid-induced enflurane defluorination in humans. Anesthesiology 1982; 57: 5–8

    Article  PubMed  CAS  Google Scholar 

  18. Keown PA, Stiller C, Laupacis AL, et al. The effects and sideeffects of cyclosporine: relationship to drug pharmacokinetics. Transplant Proc 1983; 14: 659–61

    Google Scholar 

  19. Langhoff E, Marsden S. Rapid metabolism of cyclosporin and prednisolone in kidney transplant patients. Lancet 1983; 2: 1031

    Article  PubMed  CAS  Google Scholar 

  20. Shenfield GM. Oral contraceptives. Are drug interactions of clinical significance? Drug Saf 1993; 9: 211–37

    Article  Google Scholar 

  21. Maurer PM, Bartkowski RR. Drug interactions of clinical significance with opioid analgesics. Drug Saf 1993; 8: 30–48

    Article  PubMed  CAS  Google Scholar 

  22. Udwadia ZF, Sridhar G, Beveridge CJ, et al. Catastrophic deterioration in asthma induced by rifampicin in steroid-dependent asthma. Respir Med 1993; 87: 629

    Article  PubMed  CAS  Google Scholar 

  23. Tussum-Barima Y, Carruthers SG. Quinidine-rifampicin interaction. N Engl J Med 1981; 304: 1466–9

    Article  Google Scholar 

  24. Bhatia RS, Uppal R, Malhi R, et al. Drug interaction between rifampicin and cotrimoxazole in patients with tuberculosis. Hum Exp Toxicol 1991; 10: 419–21

    Article  PubMed  CAS  Google Scholar 

  25. Coker RJ, Tomlinson DR, Parkin J, et al. Drug points: interaction between fluconazole and rifampicin. BMJ 1990; 301: 818

    Article  PubMed  CAS  Google Scholar 

  26. Lee BL, Safrin S. Interactions and toxicity of drugs used in patients with AIDS. Clin Infect Dis 1992; 14: 773–9

    Article  PubMed  CAS  Google Scholar 

  27. Committee on Safety of Medicines/Medicines Control Agency. Rifabutin (mycobutin) Uveitis. Curr Probi Pharmacovigilance 1994; 20: 4

    Google Scholar 

  28. Shafran SD, Deschenes J, Miller M, et al. Uveitis and pseudojaundice during a regimen of Clarithromycin, rifabutin and ethambutol [letter]. N Engl J Med 1994; 330: 438–9

    Article  PubMed  CAS  Google Scholar 

  29. Janknegt R, Schrouff G, Hooymans P, et al. Quinolones and penicillins incompatibility. Drug Intell Clin Pharm 1989; 23: 91–2

    CAS  Google Scholar 

  30. Janknegt R. Drug interactions with quinolones. J Antimicrob Chemother 1990; 26 Suppl. D: 7–29

    PubMed  CAS  Google Scholar 

  31. Garrelts JC, Godley PJ, Peterie J, et al. Sucralfate significantly reduces Ciprofloxacin concentrations in serum. Antimicrob Agents Chemother 1990; 34: 931–3

    Article  PubMed  CAS  Google Scholar 

  32. Sahai J, Gallicano K, Oliveras L, et al. Cations in the didanosine tablet reduce Ciprofloxacin bioavailability. Clin Pharmacol Ther 1993; 53: 292–7

    Article  PubMed  CAS  Google Scholar 

  33. Davis RL, Quenzer RW, Kelly HW, et al. Effect of the addition of Ciprofloxacin on theophylline pharmacokinetics in subjects inhibited by Cimetidine. Ann Pharmacother 1992; 26: 11–3

    PubMed  CAS  Google Scholar 

  34. Elston RA, Taylor J. Possible interaction of Ciprofloxacin with cyclosporin A. J Antimicrob Chemother 1988; 22: 679–80

    Article  Google Scholar 

  35. Hori S, Shimada J, Saito A, et al. Comparison of the inhibitory effects of new quinolones on gamma-amino butyric acid receptor binding in the presence of anti-inflammatory drugs. Rev Infect Dis 1989; 11 Suppl. 5: 1397–8

    Google Scholar 

  36. Pertek JP, Helmer J, Vivin P, et al. Potentialisation d’une antivitamine K par l’association perfloxacine-rifampicine. Ann Fr Anest Reanim 1986; 5: 320–1

    Article  CAS  Google Scholar 

  37. Bianco TM, Bussey HI, Farnett LE, et al. Potential warfarinciprofloxacin interaction in patients receiving long-term anticoagulation. Pharmacotherapy 1992; 12: 435–9

    PubMed  CAS  Google Scholar 

  38. Tiitinen H. Isoniazid and ethionamide serum levels in Finnish subjects. Scand J Respir Dis 1969; 50: 110–5

    PubMed  CAS  Google Scholar 

  39. Jain A, Mehta VL, Kulshrestha S. Effect of pyrazinamide on rifampicin kinetics in patients with tuberculosis. Tuber Lung Dis 1993; 74: 87–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grange, J.M., Winstanley, P.A. & Davies, P.D.O. Clinically Significant Drug Interactions with Antituberculosis Agents. Drug-Safety 11, 242–251 (1994). https://doi.org/10.2165/00002018-199411040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199411040-00003

Keywords

Navigation