Skip to main content

Advertisement

Log in

Plasma Protein Binding of Drugs in Pregnancy and in Neonates

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Plasma protein binding of drugs has important implications for drug disposition and action since it is the first, and controlling, step in drug distribution. Physiological changes in pregnancy include significant changes in plasma composition which affect drug binding and subsequent drug response; the extent of these changes depends on the stage of gestation. Both albumin and α1-acid glycoprotein fractions are reduced, and consequently the binding of both acidic and basic drugs may be affected. This may lead to difficulties in maintaining adequate plasma concentrations of highly protein-bound drugs, since the measurement of total drug concentration in plasma may no longer be a valid indicator for dose adjustment.

The newborn infant displays a continually changing plasma profile. The presence of fetal proteins and endogenous substrates known to interfere with drug binding can lead to unexpected complications due to a higher than expected ‘free’ drug fraction. Furthermore, a decrease in the affinity of albumin for bilirubin during this period may lead to bilirubin displacement by drugs such as diazepam, sulphonamides and salicylate, resulting in clinical jaundice which would not occur beyond the neonatal period. Plasma composition and its effect on drug binding should be taken into account when prescribing highly protein bound drugs with narrow therapeutic: toxic ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerman BD, Dyer GY, Leydorf M. Hyperbilirubinemia and kernicterus in small premature infants. Pediatrics 45: 917–919, 1970

    Google Scholar 

  • Applegren C, Borg KO, Elofsson R, Johansson KA. Binding of adrenergic beta-receptor antagonists to human serum albumin. Acta Pharmaceutica Suecica 11: 325–332, 1974

    Google Scholar 

  • Aquirre C, Rodriguez-Sasiain JM, Navajas P, Calvo R. Plasma protein binding of penbutolol in pregnancy. European Journal of Drug Metabolism and Pharmacokinetics 13(1): 23–26, 1988

    PubMed  CAS  Google Scholar 

  • Bhat R, Vidyasagar D, Vadapalli M, Whalley C, Fisher E, et al. Disposition of indomethacin in preterm infants. Journal of Pediatrics 95(2): 313–316, 1979

    PubMed  CAS  Google Scholar 

  • Bickel MH. Binding of chlorpromazine and imipramine to red cells, albumin, lipoproteins and other blood components. Journal of Pharmacy and Pharmacology 27: 733–738, 1975

    PubMed  CAS  Google Scholar 

  • Bohn H. Nachweis und Charakterisierung von Schwangerschaftsproteinen in der menschlichen Placenta, sowie ihre quantitative immunologische Bestimmung im Serum schwangerer Frauen. Archiv für Gynaekologie 210: 440–457, 1971

    CAS  Google Scholar 

  • Borga O, Piafsky KM, Nilsen OG. Plasma protein binding of basic drugs. I. Selective displacement from alpha1-acid glycoprotein by tris(2-butoxyethyl) phosphate. Clinical Pharmacology and Therapeutics 22: 539–544, 1977

    PubMed  CAS  Google Scholar 

  • Bowdle TA, Patel IH, Levy RH, Wilensky AJ. Valproic acid dosage and plasma protein binding and clearance. Clinical Pharmacology and Therapeutics 28: 486–492, 1980

    PubMed  CAS  Google Scholar 

  • Bowman WC, Rand MJ. Textbook of Pharmacology, 2nd ed., p. 40.23, Blackwell Scientific Publications, Oxford, 1980

    Google Scholar 

  • Broderson R, Bartels P. Enzymatic oxidation of bilirubin. European Journal of Biochemistry 10: 468–473, 1969

    Google Scholar 

  • Chen SS, Perucca E, Lee JN, Richens A. Serum protein binding and free concentration of phenytoin and phenobarbitone in pregnancy. British Journal of Clinical Pharmacology 13: 547–554, 1982

    PubMed  CAS  Google Scholar 

  • Chu CY-T, Singla VP, Wang H-P, Sweet B, Lai LT-Y. Plasma alpha1-acid glycoprotein levels in pregnancy. Clinica Chimica Acta 112: 235–240, 1981

    CAS  Google Scholar 

  • Cotham RH, Shand D. Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clinical Pharmacology and Therapeutics 18: 535–538, 1975

    PubMed  CAS  Google Scholar 

  • Crawford JS, Hooi HWY. Binding of salicylic acid and sulphanilamide in serum from pregnant patients, cord blood and subjects taking oral contraceptives. British Journal of Anaesthesiology 40: 825–833, 1968

    CAS  Google Scholar 

  • Crosse VM, Meyer TC, Gerrard JW. Kernicterus and prematurity. Archives of Disease in Childhood 30: 501–509, 1955

    PubMed  CAS  Google Scholar 

  • Dam M, Christiansen J, Munck O, Mygind KI. Antiepileptic drugs: metabolism in pregnancy. Clinical Pharmacokinetics 4: 53–62, 1979

    PubMed  CAS  Google Scholar 

  • De Alvarez RR, Alfonso JF, Sherrard DJ. Serum protein fractionation in normal pregnancy. American Journal of Obstetrics and Gynecology 82: 1096–1111, 1961

    Google Scholar 

  • Dean M, Stock B, Patterson RJ, Levy G. Serum protein binding of drugs during and after pregnancy in humans. Clinical Pharmacology and Therapeutics 28: 253–261, 1980

    PubMed  CAS  Google Scholar 

  • Documenta Geigy Scientific Tables (6th ed.). Diem K (Ed.) pp. 446–605, Geigy Pharmaceutical Co. Ltd, Manchester, 1962

    Google Scholar 

  • Ehrnebo M, Agurell S, Jailing B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. European Journal of Clinical Pharmacology 3: 189–193, 1971

    PubMed  CAS  Google Scholar 

  • Evans MA, Bhat R, Vidyasagar D, Vadapalli M, Fisher E, et al. Gestational age and indomethacin elimination in the neonate. Clinical Pharmacology and Therapeutics 26(6): 746–751, 1979

    PubMed  CAS  Google Scholar 

  • Fedete K. Beitrage zur Physiologie der Gravidität. Endokrinologie 7: 364–369, 1930

    Google Scholar 

  • Forfar JO, Nelson MN. Epidemiology of drugs taken by pregnant women: drugs that may affect the fetus adversely. Clinical Pharmacology and Therapeutics 14: 632–642, 1973

    PubMed  CAS  Google Scholar 

  • Ganshorn A, Kurz H. Unterschiede zwischen der Proteinbindung Neugeborener und Erwaschsener und ihre Bedeutung für die pharmakologische Wirkung. Naunyn-Schmiedebergs Archiv für Pharmakologie und Experimentelle Pathologie 260: 117–118, 1968

    CAS  Google Scholar 

  • Gardner MJ, Schatz M, Cousins L, Zeiger R, Middleton E, et al. Longitudinal effects of pregnancy on the pharmacokinetics of theophylline. European Journal of Clinical Pharmacology 32(3): 289–295, 1987

    PubMed  CAS  Google Scholar 

  • Gartner LM, Snyder RN, Chalon RS, Bernstein J. Kernicterus: high incidence in premature infants with low serum bilirubin concentrations. Pediatrics 45: 906–908, 1970

    PubMed  CAS  Google Scholar 

  • Gitlin D, Boesman M. Serum alpha-fetoprotein and gamma G-globulin in the human conceptus. Journal of Clinical Investigation 45(11): 1826–1838, 1966

    PubMed  CAS  Google Scholar 

  • Gorodischer R, Krasner J, Yaffe SJ. Serum protein binding of digoxin in newborn infants. Research Communications in Chemical Pathology and Pharmacology 9: 387–390, 1974

    PubMed  CAS  Google Scholar 

  • Hamar C, Levy G. Serum protein binding of drugs and bilirubin in newborn infants and their mothers. Clinical Pharmacology and Therapeutics 28(1): 58–63, 1980

    PubMed  CAS  Google Scholar 

  • Haram K, Augensen K, Elsayed S. Serum protein pattern in normal pregnancy with special reference to acute-phase reactants. British Journal of Obstetrics and Gynaecology 90: 139–145, 1983

    PubMed  CAS  Google Scholar 

  • Henry JA, Mitchell SN. Effect of pH on human plasma protein binding of a series of beta-adrenoceptor antagonists. British Journal of Clinical Pharmacology 11(1): 119P–120P, 1981

    CAS  Google Scholar 

  • Herngren L, Ehrnebo M, Boreus LO. Drug distribution in whole blood of mothers and their newborn infants: studies of cloxacillin and flucloxacillin. European Journal of Clinical Pharmacology 22(4): 351–358, 1982

    PubMed  CAS  Google Scholar 

  • Herngren L, Ehrnebo M, Boreus LO. Drug binding to plasma proteins during human pregnancy and in the perinatal period. Developmental Pharmacology and Therapeutics 6: 110–124, 1983

    PubMed  CAS  Google Scholar 

  • Herngren L, Ehrnebo M, Broberger U. Pharmacokinetics of free and total flucloxacillin in newborn infants. European Journal of Clinical Pharmacology 32(4): 403–410, 1987

    PubMed  CAS  Google Scholar 

  • Hill RM. Drugs ingested by pregnant women. Clinical Pharmacology and Therapeutics 14: 654–659, 1973

    PubMed  CAS  Google Scholar 

  • Hirschfield J, Soderberg U. Immuno-electrophoretic demonstration of precipitating components in sera from pregnant women. Nature 187: 332, 1960

    Google Scholar 

  • Honger PE. Intravascular mass of albumin in pre-eclampsia and normal pregnancy. Scandinavian Journal of Clinical and Laboratory Investigation 19: 283–287, 1967

    PubMed  CAS  Google Scholar 

  • Honger P. Albumin metabolism in normal pregnancy. Scandinavian Journal of Clinical and Laboratory Investigation 21: 3–9, 1968

    PubMed  CAS  Google Scholar 

  • Hubert U, Genz T, Reinhardt D. Comparison of the serum protein binding of digoxin in premature and mature newborns, infants and adults. Biological Research in Pregnancy and Perinatology 6(3): 118–120, 1985

    PubMed  CAS  Google Scholar 

  • Hytten FE, Leitch I. The physiology of human pregnancy, (2nd ed.), pp. 345–355, Blackwell Scientific Publications, Oxford, London and Edinburgh, 1971

    Google Scholar 

  • Jones EM. Capillary permeability to plasma proteins during pregnancy. Journal of Obstetrics and Gynaecology of the British Commonwealth 75: 295–299, 1968

    PubMed  CAS  Google Scholar 

  • Kapitulnik J, Eyal F, Simcha AJ. Gentamicin and bilirubin — binding by plasma. Lancet 2: 1195, 1972

    PubMed  CAS  Google Scholar 

  • Koren G, James A. Vancomycin dosing in preterm infants: prospective verification of new recommendations. Journal of Pediatrics 110: 797–798, 1987

    PubMed  CAS  Google Scholar 

  • Krasner J, Giacoia GP, Yaffe SJ. Drug-protein binding in the newborn infant. Annals of the New York Academy of Sciences 226: 101–114, 1973

    PubMed  CAS  Google Scholar 

  • Krauer B, Dayer P, Anner R. Changes in serum albumin and alpha1-acid glycoprotein concentrations during pregnancy: an analysis of fetal-maternal pairs. British Journal of Obstetrics and Gynaecology 91: 875–881, 1984

    PubMed  CAS  Google Scholar 

  • Kuhnz W, Nau H. Differences in in vitro binding of diazepam and N-desmethyldiazepam to maternal and fetal plasma proteins at birth: relation to free fatty acid concentration and other parameters. Clinical Pharmacology and Therapeutics 34(2): 220–226, 1983

    PubMed  CAS  Google Scholar 

  • Kurz H, Mauser-Ganshorn A, Stickel HH. Differences in the binding of drugs to plasma proteins from newborn and adult man. I. European Journal of Clinical Pharmacology 11: 463–467, 1977a

    PubMed  CAS  Google Scholar 

  • Kurz H, Michels H, Stickel HH. Differences in the binding of drugs to plasma proteins from newborn and adult man. II. European Journal of Clinical Pharmacology 11: 469–472, 1977b

    PubMed  CAS  Google Scholar 

  • Lau HL, Linkins SE. Alpha-fetoprotein. American Journal of Obstetrics and Gynecology 124: 533–544, 1976

    PubMed  CAS  Google Scholar 

  • Levy G, Garrettson LK. Kinetics of salicylate elimination by newborn infants of mothers who ingested aspirin before delivery. Pediatrics 53(2): 201–210, 1974

    PubMed  CAS  Google Scholar 

  • Levy RH, Moreland TA. Rationale for monitoring free drug levels. Clinical Pharmacokinetics 9 (Suppl. 1): 1–9, 1984

    PubMed  CAS  Google Scholar 

  • Lightfoot RW, Christian CL. Serum protein binding of thyroxine and diphenylhydantoin. Journal of Clinical Endocrinology and Metabolism 26: 305–308, 1966

    PubMed  CAS  Google Scholar 

  • Lin TM, Haibert SP. Immunological comparison of various human pregnancy-associated plasma proteins. International Archives of Allergy and Applied Immunology 48: 101–115, 1975

    PubMed  CAS  Google Scholar 

  • Lin TM, Halbert SP, Spellacy WN. Measurement of pregnancy-associated plasma proteins during human gestation. Journal of Clinical Investigation 54: 576–582, 1974

    PubMed  CAS  Google Scholar 

  • Lin TM, Halbert SP, Spellacy WN, Gall S. Human pregnancy-associated plasma proteins during the postpartum period. American Journal of Obstetrics and Gynecology 124(4): 382–387, 1976

    PubMed  CAS  Google Scholar 

  • Lovecchio JL, Krasner J, Yaffe SJ. Serum protein binding of salicylate during pregnancy and in the puerperium. Developmental Pharmacology and Therapeutics 2: 172–179, 1981

    PubMed  CAS  Google Scholar 

  • MacGillivray I, Tovey JE. A study of the serum protein changes in pregnancy and toxaemia using paper strip electrophoresis. Journal of Obstetrics and Gynaecology of the British Empire 64: 361–364, 1957

    PubMed  CAS  Google Scholar 

  • Maisels MJ, Pathak A, Nelson NM, Nathan DG, Smith CA. Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. Journal of Clinical Investigation 50: 1–8, 1971

    PubMed  CAS  Google Scholar 

  • Mather LE, Long GJ, Thomas J. The binding of bupivacaine to maternal and foetal plasma proteins. Journal of Pharmacy and Pharmacology 23: 359–365, 1971

    PubMed  CAS  Google Scholar 

  • Meffin PJ, Robert EW, Winkle RA, Harapat S, Peters FA, et al. Role of concentration-dependent plasma protein binding of disopyramide disposition. Journal of Pharmacokinetics and Biopharmaceutics 7: 29–46, 1979

    PubMed  CAS  Google Scholar 

  • Miyoshi K, Saijo K, Kotani Y, Kasiwagi T, Kawai H. Characteristic properties of fetal human albumin (alb F) in isomerization equilibrium. Tokushima Journal of Experimental Medicine 13: 121–128, 1966

    PubMed  CAS  Google Scholar 

  • Mora R, Rebeyotte P, Polonovski J. Influence des substances tensio-actives sur la mobilité électrophorétique des lipoproteides plasmatiques. Journal Bulletin of the Society of Chemistry and Biology 37: 957–968, 1955

    CAS  Google Scholar 

  • Nau H, Luck W, and Kuhnz W. Decreased serum protein binding of diazepam and its major metabolite in the neonate during the first postnatal week relate to increased free fatty acid levels. British Journal of Clinical Pharmacology 17: 92–98, 1984

    PubMed  CAS  Google Scholar 

  • Nau H, Rating D, Koch S. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mother’s milk and clinical status in neonates of epileptic mothers. Journal of Experimental Therapeutics 219: 768–777, 1981

    CAS  Google Scholar 

  • Nilsen OG, Jacobsen S. The binding of quinidine to protein fractions of normal human sera. Biochemical Pharmacology 24: 995–998, 1975

    PubMed  CAS  Google Scholar 

  • Nyman M. Serum haptoglobin. Scandinavian Journal of Clinical and Laboratory Investigation 11 (Suppl. 39): 1–169, 1959

    PubMed  CAS  Google Scholar 

  • O’Connor WJ, Warren GH, Mandala PS, Edrada LS, Rosenmann SB. Serum concentrations of nafcillin in newborn infants and children. Antimicrobial Agents and Chemotherapy 4: 188–191, 1964

    Google Scholar 

  • Odell GB. Influence of binding on the toxicity of bilirubin. Annals of the New York Academy of Sciences 226: 225–237, 1973

    PubMed  CAS  Google Scholar 

  • Odell GB, Cohen S. The effect of pH on the binding of bilirubin. AMA American Journal of Diseases of Children: 105: 525–530, 1960

    Google Scholar 

  • Olsen G. Methadone binding to human plasma proteins. Clinical Pharmacology and Therapeutics 14: 338–343, 1973

    PubMed  CAS  Google Scholar 

  • Osathanondh R, Tulchinsky D, Kamali H, Fencl M, Taeusch HW. Dexamethasone levels in pregnant women and newborn infants. Journal of Pediatrics 90: 617–620, 1977

    PubMed  CAS  Google Scholar 

  • Paaby P. Changes in serum proteins during pregnancy. Journal of Obstetrics and Gynaecology of the British Commonwealth 67: 43–55, 1960

    CAS  Google Scholar 

  • Paxton JW, Clader RL. Propranolol binding in serum: comparison of methods and investigation of effects of drug concentration, pH and temperature. Journal of Pharmacy and Pharmacological Methods 10: 1–11, 1983

    CAS  Google Scholar 

  • Perucca E. Plasma protein binding of phenytoin in health and disease: relevance to therapeutic drug monitoring. Therapeutic Drug Monitoring 2(4): 331–344, 1980

    PubMed  CAS  Google Scholar 

  • Perucca E. Free level monitoring of anti-epileptic drugs: clinical usefulness and case studies. Clinical Pharmacokinetics 9 (Suppl. 1): 71–78, 1984

    PubMed  Google Scholar 

  • Perucca E, Ruprah M, Richens A. Altered drug binding to serum proteins in pregnant women: therapeutic relevance. Journal of the Royal Society of Medicine 74: 422–426, 1981a

    PubMed  CAS  Google Scholar 

  • Perucca E, Ruprah M, Richens A. Decreased serum protein binding of diazepam and valproic acid in pregnant women. British Journal of Clinical Pharmacology 12: 276P, 1981b

    Google Scholar 

  • Petersen MC, Moore RG, Nation RL. Relationship between the transplacental gradients of bupivacaine and alpha1-acid glycoprotein. British Journal of Clinical Pharmacology 12: 859–862, 1981

    PubMed  CAS  Google Scholar 

  • Petersen S, Gotfredsen A, Knudsen FU. Lean body mass in small for gestational age and appropriate for gestational age children. Journal of Pediatrics 113: 886–889, 1988

    PubMed  CAS  Google Scholar 

  • Pfau P. Die Serumerhaltnisse während der normalen und gestorten Schwangerschaft. Archiv für Gynaekologie 185: 188–207, 1954

    CAS  Google Scholar 

  • Piafsky KM, Borga O. Plasma protein binding of basic drugs. II. Importance of alpha1-acid glycoprotein for interindividual variation. Clinical Pharmacology and Therapeutics 22: 545–549, 1977

    PubMed  CAS  Google Scholar 

  • Piafsky KM, Woolner EA. The binding of basic drugs to alpha1-acid glycoprotein in cord serum. Journal of Pediatrics 100(5): 820–822, 1982

    PubMed  CAS  Google Scholar 

  • Pike E, Kieerulf D, Skuterud B, Bredesen JE, Lunde PKM. Drug binding in sera deficient in lipoproteins, albumin or orosomucoid. British Journal of Clinical Pharmacology 16: 233–239, 1983

    PubMed  CAS  Google Scholar 

  • Pirani BBK, Campbell DM. Plasma volume in normal first pregnancy. Journal of Obstetrics and Gynaecology of the British Commonwealth 80: 884–887, 1973

    PubMed  CAS  Google Scholar 

  • Plasse JC, Revol M, Mamelle JC, Dutruge J. Protein binding of antiepileptic drugs in plasma during pregnancy and after delivery. XI International Epilepsy Symposium, Florence, Abstract 4–67, p. 168, 1979

  • Rane A, Lunde PKM, Jailing B, Yaffe SJ, Sjoqvist F. Plasma protein binding of diphenylhydantoin in normal and hyperbilirubinemia infants. Journal of Pediatrics 78: 877–822, 1971

    PubMed  CAS  Google Scholar 

  • Reboud P, Groulade J, Groslambert P, Colomb M. The influence of normal pregnancy and the postpartum state on plasma proteins and lipids. American Journal of Obstetrics and Gynecology 86: 820–828, 1963

    PubMed  CAS  Google Scholar 

  • Reidenberg MM, Drayer DE. Alteration of drug-protein binding in renal disease. Clinical Pharmacokinetics 9 (Suppl. 1): 18–26, 1984

    PubMed  Google Scholar 

  • Ridd MJ, Brown KF, Moore RG, McBride WG, Nation RL. Diazepam plasma binding in the perinatal period: influence of nonesterified fatty acids. European Journal of Clinical Pharmacology 22: 153–160, 1982

    PubMed  CAS  Google Scholar 

  • Routledge PA. The plasma protein binding of basic drugs. British Journal of Clinical Pharmacology 22: 499–506, 1986

    PubMed  CAS  Google Scholar 

  • Rowland M. Plasma protein binding and therapeutic drug monitoring. Therapeutic Drug Monitoring 2(1): 29–37, 1980

    PubMed  CAS  Google Scholar 

  • Schiff D, Chan G, Stern L. Fixed drug combinations and the displacement of bilirubin from albumin. Pediatrics 48: 139–141, 1971

    PubMed  CAS  Google Scholar 

  • Seppala M, Ruoslahti E. Alpha feto-protein in maternal serum: a new marker for determination of fetal distress and intrauterine death. American Journal of Obstetrics and Gynecology 115: 48–52, 1973

    PubMed  CAS  Google Scholar 

  • Silverman WA, Anderson DH, Blank WA, Crozier DN. A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimes. Pediatrics 18: 614–616; 1956

    PubMed  Google Scholar 

  • Sisson TRC. Blood volume in newly born infants. In Stave U (Ed.) Perinatal physiology, 2nd ed., Plenum Publishing, New York, 1978

    Google Scholar 

  • Stern L. Drugs, the newborn infant, and the binding of bilirubin to albumin. Pediatrics 49: 916–918, 1972

    PubMed  CAS  Google Scholar 

  • Stern L, Denton RL. Kernicterus in small premature infants. Pediatrics 35: 483–485, 1965

    PubMed  CAS  Google Scholar 

  • Studd J. The plasma proteins in pregnancy. Clinical Obstetrics and Gynecology 2: 285–300, 1975

    Google Scholar 

  • Studd JWW, Blainey JD, Bailey DE. A study of serum protein changes in late pregnancy and identification of the pregnancy zone protein using antigen antibody crossed immunoelectrophoresis. Journal of Obstetrics and Gynaecology of the British Commonwealth 77: 42–51, 1970

    PubMed  CAS  Google Scholar 

  • Svensson CK, Woodruff MN, Baxter JG, Lalka D. Free drug concentration monitoring in clinical practice: rationale and current status. Clinical Pharmacokinetics 11: 450–469, 1986

    PubMed  CAS  Google Scholar 

  • Trolle D. Decrease of total serum-bilirubin concentration in newborn infants after phenobarbitone treatment. Lancet 2: 705–708, 1968

    PubMed  CAS  Google Scholar 

  • Vest MF. Studies on haemoglobin breakdown and incorporation of (15N) glycine into haem and bile pigment in the newborn. In Bouchier & Billing (Eds) Bilirubin metabolism, pp. 47–53, Blackwell, Oxford, 1967

    Google Scholar 

  • Vest MF, Grieder H. Erythrocyte survival in the newborn infant as measured by chromium51 and its relation to the postnatal serum bilirubin level. Journal of Pediatrics 59: 194–199, 1961

    PubMed  CAS  Google Scholar 

  • Widdowson EM, Southgate DAT, Hey EN. In Visser (Ed.) Nutrition and metabolism of the fetus and infant, pp. 169–177, Martinus Nijhoff Publishers, The Hague, 1979

  • Windorfer A, Kuenzer W, Urbanek R. The influence of age on the activity of acetylsalicylic acid-esterase and protein-salicylate binding. European Journal of Clinical Pharmacology 7: 227–231, 1974

    PubMed  CAS  Google Scholar 

  • Wood M, Wood AJJ. Changes in plasma protein binding and alpha1-acid glycoprotein in mother and newborn infant. Clinical Pharmacology and Therapeutics 29: 522–526, 1981

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Notarianni, L.J. Plasma Protein Binding of Drugs in Pregnancy and in Neonates. Clin. Pharmacokinet. 18, 20–36 (1990). https://doi.org/10.2165/00003088-199018010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199018010-00002

Keywords

Navigation