Skip to main content
Log in

The Clinical Pharmacokinetics of the Newer Antiepileptic Drugs

Focus on Topiramate, Zonisamide and Tiagabine

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Following the introduction of felbamate, gabapentin, lamotrigine, oxcarbazepine and vigabatrin in the early 1990s, other new antiepileptic drugs have been advancing in clinical development. Those most extensively evaluated to date include topiramate, zonisamide and tiagabine.

Topiramate, licensed recently in the UK, acts multifactorially through the blockade of sodium channels and kainate/AMPA receptors, enhancement of γ-aminobutyric acid (GABA)ergic transmission and inhibition of carbonic anhydrase. It is well absorbed from the gastrointestinal tract and negligibly bound to plasma proteins. When used as a monotherapy, topiramate is eliminated primarily in the urine in an unchanged form with a half-life of 20 to 30 hours; elimination is faster in patients receiving concurrent medication with enzyme-inducing anticonvulsants, in whom the extent of biotransformation becomes more prominent.

Zonisamide, which has been commercially available in Japan for some years, also has a multifactorial mode of action, possibly involving the blockade of sodium channels, T-type calcium channels and inhibition of carbonic anhydrase. It is rapidly absorbed, 50% bound to plasma proteins and is eliminated predominantly by biotransformation; zonisamide has a half-life of 50 to 70 hours in monotherapy patients, or 25 to 35 hours in patients comedicated with enzyme-inducing anticonvulsants.

Tiagabine, a nipecotic acid derivative which inhibits GABA reuptake, is rapidly and completely absorbed after oral intake. It is highly (96%) bound to plasma proteins and it is eliminated primarily by cytochrome P450 3A-mediated oxidation, with a half-life of about 7 hours in healthy volunteers. Tiagabine metabolism is also enhanced by concurrent medication with enzyme-inducing anticonvulsants, resulting in a need to use dosages larger than those required in monotherapy or valproic acid (sodium valproate)-treated patients.

Additional investigational antiepileptic agents included in this article are rufinamide (CGP 33101), fosphenytoin, levetiracetam, losigamone, remacemide and stiripentol. All these drugs have undergone early characterisation with respect to pharmacokinetic features and interaction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richens A, Perucca E. Clinical pharmacology and medical treatment. In: Laidlaw J, Richens A, Chadwick D, editors. A textbook of epilepsy. Edinburgh: Churchill-Livingstone, 1993: 495–559

    Google Scholar 

  2. Bialer M. Comparative pharmacokinetics of the newer antiepileptic drugs. Clin Pharmacokinet 1993; 24: 441–52

    PubMed  CAS  Google Scholar 

  3. Perucca E. The clinical pharmacology of the new antiepileptic drugs. Pharm Res 1993; 28: 89–106

    CAS  Google Scholar 

  4. Goa KL, Sorkin EM. Gabapentin: a review of its pharmacological properties and clinical potential in epilepsy. Drugs 1993; 46: 409–27

    PubMed  CAS  Google Scholar 

  5. Goa KL, Ross SR, Chrisp P. Lamotrigine: a review of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1993; 46: 152–76

    PubMed  CAS  Google Scholar 

  6. Grant SM, Faulds D. Oxcarbazepine: a review of its pharmacology and therapeutic potential in epilepsy, trigeminal neuralgia and affective disorders. Drugs 1992; 43: 873–88

    PubMed  CAS  Google Scholar 

  7. Palmer KJ, McTavish D. Felbamate: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in epilepsy. Drugs 1993; 45: 1041–65

    PubMed  CAS  Google Scholar 

  8. Rambeck B, Wolf P. Lamotrigine clinical pharmacokinetics. Clin Pharmacokinet 1993; 25: 433–43

    PubMed  CAS  Google Scholar 

  9. Rey E, Pons G, Olive G. Vigabatrin clinical pharmacokinetics. Clin Pharmacokinet 1992; 23: 267–78

    PubMed  CAS  Google Scholar 

  10. Richens A. Clinical pharmacokinetics of gabapentin. In: Chadwick D, editor. New trends in epilepsy management. London: Royal Society of Medicine Services Ltd, 1993: 41–6

    Google Scholar 

  11. Maryanoff BE, Margul BL. Topiramate. Drugs Future 1989; 14: 342–4

    Google Scholar 

  12. Shank RP. Preclinical profile of topiramate, a novel anticonvulsant. Adv Antiepilep Drug Ther 1995; 1: 1–6

    Google Scholar 

  13. Shank RP, Gardocki JF, Vaught JL, et al. Topiramate: preclinical evaluation of a structurally novel anticonvulsant. Epilepsia 1994; 35: 450–60

    PubMed  CAS  Google Scholar 

  14. Reife RA, Pledger GW. Clinical efficacy of topiramate: US and European experience. Adv Antiepilep Drug Ther 1995; 1: 17–23

    Google Scholar 

  15. Easterling DE, Zakszewski T, Moyer MD, et al. Plasma pharmacokinetics of topiramate, a new anticonvulsant, in humans [abstract]. Epilepsia 1988; 29: 662

    Google Scholar 

  16. Takahashi A, Kasahara T, Sugiyama T, et al. Phase I study of topiramate in Japanese subjects. Epilepsia 1995; 36 Suppl. 3: S149

    Google Scholar 

  17. Doose DR. Gisclon LG, Liao S, et al. Pharmacokinetics of topiramate. Adv Antiepilep Drug Ther 1995; 1: 7–16

    Google Scholar 

  18. Perucca E. Pharmacokinetic profile of topiramate in comparison with other new antiepileptic drugs. Epilepsia 1996; 37 Suppl. 2: S8–12

    PubMed  CAS  Google Scholar 

  19. Doose DR, Scott VV, Margul BL, et al. Multiple-dose pharmacokinetics of topiramate in healthy male subjects [abstract]. Epilepsia 1988; 29: 662

    Google Scholar 

  20. Doose DR, Walker SA, Sachdeo R, et al. Steady-state pharmacokinetics of Tegretol (carbamazepine) and Topamax (topiramate) in patients with epilepsy on monotherapy and during combination therapy [abstract]. Epilepsia 1994; 35 Suppl. 8: 54

    Google Scholar 

  21. Gisclon LG, Curtin CR, Kramer LD, et al. Steady-state pharmacokinetics of phenytoin (Dilantin) and topiramate (Topamax) in epileptic patients on monotherapy and during combination therapy [abstract]. Epilepsia 1994; 35 Suppl. 8: 54

    Google Scholar 

  22. Sachdeo RC, Sachdeo SK, Walker SA, et al. Steady-state pharmacokinetics of topiramate and carbamazepine in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia. In press

  23. Holland ML, Evans CR, Lucas PN, et al. The effect of coadministration of probenecid on the pharmacokinetics of topiramate in female Sprague-Dawley rats [abstract no. 195]. 4th North American Meeting of the International Society for the Study of Xenobiotics; 1992 Nov 2–6: Bar Harbour (FL).

  24. Ben-Menachem E. Potential antiepileptic drugs: topiramate. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 1063–70

    Google Scholar 

  25. Floren KL, Graves NM, Leppik IE, et al. Pharmacokinetics of topiramate in patients with partial epilepsy receiving phenytoin or valproate [abstract]. Epilepsia 1989; 30: 646

    Google Scholar 

  26. Rosenfeld WE, Liao S, Kramer LD, et al. Comparison of the steady-state pharmacokinetics of topiramate and valproic acid in patients with epilepsy during monotherapy and concomitant therapy. Epilepsia. In press

  27. Rosenfeld WE, Doose DR, Walker SA, et al. The steady-state pharmacokinetics of topiramate as adjunctive therapy in pediatric subjects with epilepsy. Poster presented at the 21st International Epilepsy Congress; 1995 Sep 3–8: Sydney

  28. Reife RA, Pledger G, Doose D, et al. Topiramate: PK/PD analyses [abstract]. Epilepsia 1995; 36 Suppl. 3: S152

    Google Scholar 

  29. Doose DR, Walker SA, Pledger G, et al. Evaluation of phenobarbital and primidone/phenobarbital (primidone’s active metabolite) plasma concentrations during administration of add-on topiramate therapy in five multicenter, double-blind, placebo controlled trials in outpatients with partial seizures [abstract]. Epilepsia 1995; 36 Suppl. 3: S158

    Google Scholar 

  30. Levy RH, Bishop F, Streeter AJ, et al. Explanation and prediction of drug interactions with topiramate using a CYP450 inhibition spectrum [abstract]. Epilepsia 1995; 36 Suppl. 4: 47

    Google Scholar 

  31. Johannessen SI. Pharmacokinetics and drug interactions: a non-issue for some new antiepileptic drugs? In: Topiramate in Perspective. —International Epileptology Symposium; 1995 Nov 11–12: London

  32. Bourgeois BE Drug interaction profile of topiramate. Epilepsia. In press

  33. Peters DH, Sorkin EM. Zonisamide: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential in epilepsy. Drugs 1993; 45: 760–87

    PubMed  CAS  Google Scholar 

  34. Ito T, Yamaguchi T, Miyazaki H, et al. Pharmacokinetic structure od AD-810, a new antiepileptic compound in phase I trials. Arzneimittel Forschung 1982; 32: 1581–6

    PubMed  CAS  Google Scholar 

  35. Matsumoto K, Miyazaki H, Fujii T, et al. Absorption, distribution and excretion of 3-(sulfamoyl(14C)-methyl)-1,2-benzisoxazole (AD-810) in rats, dogs, monkeys and of AD-810 in man. Arzneimittelforschung 1983; 33: 961–8

    PubMed  CAS  Google Scholar 

  36. Siedlik P, Brockbrader H, Chang T, et al. Effect of food on the oral absorption of zonisamide in normal healthy volunteers [abstract]. Pharm Res 1986; 3 Suppl.: S158

    Google Scholar 

  37. Seino M, Naruto S, Ito T, et al. Other antiepileptic drugs: zonisamide. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 1011–23

    Google Scholar 

  38. Taylor CP, McLean JR, Brockbrader HN, et al. Zonisamide (AD-810, CI-912). In: Meldrum BS, Porter RJ, editors. New anticonvulsant drugs. London: John Libbey, 1986: 277–94

    Google Scholar 

  39. Hashimoto Y, Odani A, Tanigawara Y, et al. Population analysis of the dose-dependent pharmacokinetics of zonisamide in epileptic patients. Biol Pharm Bull 1994; 17: 323–6

    PubMed  CAS  Google Scholar 

  40. Matsumoto K, Miyazaki H, Fujii T, et al. Binding of sulfonamides to erythrocytes and their components. Chem Pharm Bull 1989; 37: 1913–5

    PubMed  CAS  Google Scholar 

  41. Kimura M, Tanaka N, Kimura Y, et al. Factors influencing serum concentration of zonisamide in epileptic patients. Chem Pharm Bull 1992; 40: 193–5

    PubMed  CAS  Google Scholar 

  42. Matsumoto K, Miyazaki H, Fujii T, et al. Binding of sulfonamides to erythrocyte proteins and possible drug-drug interaction. Chem Pharm Bull 1989; 37: 2807–10

    PubMed  CAS  Google Scholar 

  43. Nishiguchi K, Ohnishi N, Iwakawa S, et al. Pharmacokinetics of zonisamide: saturable distribution into human and rat erythrocytes and into rat brain. J Pharmacobiodyn 1992; 15: 409–15

    PubMed  CAS  Google Scholar 

  44. Ojemann LM, McLean JR, Buchanan RA. Comparative pharmacokinetics of zonisamide (CI-912) in epileptic patients on carbamazepine or phenytoin monotherapy. Ther Drug Monit 1986; 8: 293–6

    PubMed  CAS  Google Scholar 

  45. Sackellares JC, Donofrio PD, Wagner JG, et al. Pilot study of zonisamide (1,2-benzisoxazole-3-methanesulfonamide) in patients with refractory partial seizures. Epilepsia 1985; 26: 206–11

    PubMed  CAS  Google Scholar 

  46. Matsumoto K, Yoshida K, Fujii T, et al. Metabolism of 14C-zonisamide in rats, dogs and monkeys. Xenobiot Metab Disp 1989; 4: 11–8

    Google Scholar 

  47. Woolf TF, Clang T. Metabolism of 14-zonisamide in healthy volunteers [abstract]. Pharm Res 1986; 3 Suppl.: 159s

    Google Scholar 

  48. Nakasa H, Komiya M, Ohmori S, et al. Characterization of human liver microsomal cytochrome P450 involved in the reductive metabolism of zonisamide. Mol Pharmacol 1993; 44: 218–21

    Google Scholar 

  49. Wagner JG, Sackellares JC, Donofrio PD, et al. Nonlinear pharmacokinetics of CI-912 in adult epileptic patients. Ther Drug Monit 1984; 6: 277–83

    PubMed  CAS  Google Scholar 

  50. Wilensky AJ, Friel PN, Ojemann LM, et al. Zonisamide in epilepsy: a pilot study. Epilepsia 1985; 26: 212–20

    PubMed  CAS  Google Scholar 

  51. Shimizu A, Yamamoto J, Yamada Y, et al. The antiepileptic effect of zonisamide in patients with refractory seizures. Curr Ther Res 1987; 42: 147–55

    Google Scholar 

  52. Ono T, Yagi K, Seino M. Clinical efficacy and safety of a new antiepileptic drug, zonisamide: a multi-institutional phase III study. Seishin Iyaku 1988; 30: 471–82

    Google Scholar 

  53. Fukushima K, Yagi K, Seino M, et al. Phase II study of zonisamide (ZNA), a new antiepileptic drug, in epileptic children. Jpn J Pediatr 1987; 40: 3389–97

    Google Scholar 

  54. Yagi K, Seino M, Mihara, T, et al. Open clinical trial of new antiepileptic drug, zonisamide (ZNA) on 49 patients with refractory epileptic seizures. Clin Psych 1987; 29: 111–9

    Google Scholar 

  55. Kaku M, Ishitsu T, Chikazawa S, et al. Serum concentrations of zonisamide in children with epilepsy. J Kyushu Pharm Soc 1991; 45: 2–30

    Google Scholar 

  56. Yagi K, Seino M. Methodological requirements for clinical trials in refractory epilepsies: our experience with zonisamide. Proceedings of the Symposium on Advances in Basic Research and Treatment of Refractory Epilepsy; 1990 Sep 10–14: Kyoto. Tokyo: Dainippon Pharm Co Ltd, 1990: 16–9

    Google Scholar 

  57. Schentag JJ, Gengo FM, Wilton JH, et al. Influence of phenobarbital, cimetidine, and renal disease on zonisamide kinetics [abstract]. Pharm Res 1987; 4 Suppl.: S79

    Google Scholar 

  58. Naito H, Itoh N, Matsui N, et al. Monitoring plasma concentrations of zonisamide and clonazepam in an epileptic attempting suicide by an overdose of the drugs. Curr Ther Res 1988; 43: 463–7

    Google Scholar 

  59. Oguni H, Hayakawa T, Fukuyama Y. Clinical trial of zonisamide, a new antiepileptic drug, in cases of refractory childhood epilepsy. J Jpn Epilep Soc 1989; 7: 43–50

    Google Scholar 

  60. Shuto H, Sugimoto T, Yasuhara A, et al. Efficacy of zonisamide in children with refractory partial seizures. Curr Ther Res 1989; 45: 1031–6

    Google Scholar 

  61. Iinuma K, Handa I, Fueki N, et al. Effects of zonisamide (AD-810) on refractory epilepsy in children: special reference to temporal lobe abnormalities. Curr Ther Res 1988; 43: 281–90

    Google Scholar 

  62. Kanazawa O, Kanemoto K, Sengoku A, et al. A clinical trial of zonisamide on adults and children with refractory epilepsy: thirty-five cases with a long administration for more than one year. J Jpn Epil Soc 1990; 8: 29–38

    Google Scholar 

  63. Sakamoto K, Kurokawa T, Tomita N, et al. Effects of zonisamide in children with epilepsy. Curr Ther Res 1988; 43: 378–83

    Google Scholar 

  64. Abo J, Miura H, Takanashi S, et al. Drug interaction between zonisamide and carbamazepine: a pharmacokinetic study in children with cryptogenic localization-related epilepsies [abstract]. Epilepsia 1995; 36 Suppl. 3: S162

    Google Scholar 

  65. Kaneko S, Hayashimoto A, Niwayama H, et al. Effects of zonisamide on serum levels of phenytoin and carbamazepine. Jpn J Epil Soc 1993; 11: 31–5

    Google Scholar 

  66. Browne TR, Szabo GK, Kres J, et al. Drug interactions of zonisamide (CI-912) with phenytoin and carbamazepine. J Clin Pharmacol 1986; 26: 555

    Google Scholar 

  67. Minami T, Ieiri I, Ohtsubo K, et al. Influence of additional therapy with zonisamide (Excegran) on protein binding and metabolism of carbamazepine. Epilepsia 1994; 35: 1023–5

    PubMed  CAS  Google Scholar 

  68. Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 1995: 36: 612–26

    PubMed  CAS  Google Scholar 

  69. Lassen LC, Sommerville K, Mengel HB, et al. Summary of five controlled trials with tiagabine as adjunctive treatment of patients with partial seizures [abstract]. Epilepsia 1995; 36 Suppl. 3: S148

    Google Scholar 

  70. Gustavson L, Mengel H. Pharmacokinetics of tiagabine, a gamma-aminobutyric acid-uptake inhibitor, in healthy subjects after single and multiple doses. Epilepsia 1995; 36: 605–11

    PubMed  CAS  Google Scholar 

  71. Inami M, Watanabe H, Tajahashi A, et al. Tiagabine in healthy Japanese subjects: single- and multiple-dose study [abstract]. Epilepsia 1995; 36 Suppl. 3: S158

    Google Scholar 

  72. Jansen JA, Oliver S, Dirach J, et al. Absolute bioavailability of tiagabine [abstract]. Epilepsia 1995; 36 Suppl. 3: S159

    Google Scholar 

  73. Brodie M. Pharmacology — tiagabine in profile. In: Tiagabine: the art of epilepsy care. Proceedings of a Satellite Symposium to the 21st International Epilepsy Congress; 1995 Sep 2; Syndey. Sydney: Novo Nordisk, 1995: 8–12

    Google Scholar 

  74. Leppik IE, So E, Pask CA, et al. Pharmacokinetic study of tiagabine HCl in patients at multiple steady-state dose [abstract]. Epilepsia 1993; 34 Suppl. 6: 355

    Google Scholar 

  75. Bopp B, Gustavson L, Johnson M, et al. Pharmacokinetics and metabolism of (14C)-tiagabine HCl after oral administration to human subjects [abstract]. Epilepsia 1995; 36 Suppl. 3: S158

    Google Scholar 

  76. Bopp BA, Nequist GE, Rodrigues AD, et al. Role of the cytochrome P450 3A subfamily in the metabolism of (14C)-tiagabine by human hepatic microsomes [abstract]. Epilepsia 1995; 36 Suppl. 3: S159

    Google Scholar 

  77. Mengel HB, Pierce MW, Mant TGB, et al. Tiagabine: safety and tolerance during 2-week multiple dosing to healthy volunteers [abstract]. Epilepsia 1991; 32 Suppl. 1: 99–100

    Google Scholar 

  78. Snel S, Mukherjee S, Richens A, et al. Pharmacokinetics of tiagabine in the elderly [abstract]. Epilepsia 1993; 34 Suppl. 2: 157

    Google Scholar 

  79. Cato A, Qian JX, Gustavson LE, et al. Pharmacokinetics and safety of tiagabine in subjects with various degrees of renal function [abstract]. Epilepsia 1995; 36 Suppl. 3: S159

    Google Scholar 

  80. Gustavson LE, Qian JX, Saulis R, et al. Pharmacokinetics and safety of tiagabine in subjects with varying degrees of hepatic function [abstract]. Epilepsia 1995; 36 Suppl. 3: S159

    Google Scholar 

  81. Richens A, Gustavson LE, McKelvy JF, et al. Pharmacokinetics and safety of single-dose tiagabine HCl in epileptic patients chronically treated with four other antiepileptic drug regimens [abstract]. Epilepsia 1991; 32 Suppl. 1: 12

    Google Scholar 

  82. Ostergaard LH, Gram L, Dam M. Potential antiepileptic drugs: tiagabine. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 1057–61

    Google Scholar 

  83. Gustavson LE, Cato A, Guenther HJR, et al. Lack of clinically important drug interactions between tiagabine and carbamazepine, phenytoin, or valproate [abstract]. Epilepsia 1995; 36 Suppl. 3: S159

    Google Scholar 

  84. Mengel H, Jansen JA, Sommerville K, et al. Tiagabine: evaluation of the risk of interaction with theophylline, warfarin, digoxin, cimetidine, oral contraceptives, triazolam, or ethanol. Epilepsia 1995; 36 Suppl. 3: S160

    Google Scholar 

  85. Mengel HB, Houston A, Back DJ. An evaluation of the interaction between tiagabine and oral contraceptives in female volunteers. J Pharm Med 1994; 4: 141–50

    Google Scholar 

  86. Stables J, Bialer M, Johannessen SI, et al. Progress report on new antiepileptic drugs: a summary of the Second Eilat Conference. Epilepsy Res 1995; 22: 235–46

    PubMed  CAS  Google Scholar 

  87. Bebin M, Black TP. New anticonvulsant drugs: focus on flunarizine, fosphenytoin, midazolam and stiripentol. Drugs 1994; 48: 153–71

    PubMed  CAS  Google Scholar 

  88. Donn KH, Drissel DA, Quon CY. Systemic availability and pharmacokinetics of phenytoin after intramuscular ACC-9653, a phenytoin prodrug [abstract]. Epilepsia 1987; 28: S87

    Google Scholar 

  89. Boucher BA, Bombassaro AM, Rasmussen SN, et al. Phenytoin prodrug 3-fosphoryloxymethylphenytoin (ACC-9653: pharmacokinetics in patients following intravenous and intramuscular administration. J Pharm Sci 1989; 78: 429–32

    Google Scholar 

  90. Browne TR, Davoudi H, Donn KH, et al. Bioavailability of ACC-9653 (phenytoin prodrug). Epilepsia 1989; 30 Suppl. 2: S27–32

    PubMed  Google Scholar 

  91. Leppik IE, Boucher BA, Wilder BJ, et al. Pharmacokinetics and safety of a phenytoin prodrug given IV and IM in patients. Neurology 1990; 40: 456–60

    PubMed  CAS  Google Scholar 

  92. Gerber N, Mays DC, Dohn KH, et al. Safety, tolerance and pharmacokinetics of intravenous doses of the phosphate ester of 3-hydroxymethyl-5,5-diphenylhydantoin, a new prodrug of phenytoin. J Clin Pharmacol 1988; 28: 1023–32

    PubMed  CAS  Google Scholar 

  93. Fischer PA, Sloan EP, Turnbull TL, et al. Safety and pharmacokinetics of intravenous loading doses of fosphenytoin for acute treatment of seizures. Epilepsia 1995; 36 Suppl. 3: S160

    Google Scholar 

  94. Leppik IE, Boucher BA, Wilder BJ, et al. Phenytoin prodrug: preclinical and clinical studies [abstract]. Epilepsia 1989; 30 Suppl. 2: S22–6

    PubMed  Google Scholar 

  95. Cower AJ, Noyer M, Verloes R, et al. ucb LO59, A novel anticonvulsant drug: pharmacological profile in animals. Eur J Pharmacol 1992; 222: 193–203

    Google Scholar 

  96. Patsalos PN, Walker MC, Ratnaraj N, et al. The pharmacokinetics of levetiracetam (UCB LO59) in patients with intractable epilepsy [abstract]. Epilepsia 1995; 36 Suppl. 4: 54

    Google Scholar 

  97. Edelbroeck PM, de Wilde-Ockeleon JM, Kastelejin-Nolste-Trenite DGA, et al. Evaluation of the pharmacokinetics and neuropsychometrics parameters in chronic comedicated epileptic patients of three increasing dosages of a novel antiepileptic drug, ucb LO59 250 mg capsules per each dose for one week followed by two weeks of placebo [abstract]. Epilepsia 1993; 34 Suppl. 2: 7

    Google Scholar 

  98. Stein U. Potential antiepileptic dugs: losigamone. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 1025–34

    Google Scholar 

  99. Kramer G, Wad N, Bredel-Geissler A, et al. Losigamone-phenytoin interaction: a placebo-controlled, double-blind study in healthy volunteers. Epilepsia 1995; 36 Suppl. 3: S163

    Google Scholar 

  100. Kramer G, Wad N, Bredel-Geissler A, et al. Losigamone-valproate interaction: a placebo-controlled, double-blind study in healthy volunteers [abstract]. Epilepsia 1995; 36 Suppl. 4: 53

    Google Scholar 

  101. Palmer GC, Clark B, Hutchinson JB. Antiepileptic and neuroprotective potential of remacemide hydrochloride. Drugs Future 1993; 18: 1021–42

    Google Scholar 

  102. Palmer GC, Murray RJ, Wilson TCM, et al. Biological profile of the metabolites and potential metabolites of the anticonvulsant remacemide. Arch Intern Pharmacodyn Ther 1992; 317: 16–34

    CAS  Google Scholar 

  103. Clark B, Hutchison JB, Jamieson V, et al. Potential antiepileptic dugs: losigamone. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 1035–44

    Google Scholar 

  104. Scheyer RD, Cramer JA, Leppik IE, et al. Remacemide elimination after initial and chronic dosing [abstract]. Clin Pharmacol Ther 1992; 51: 89

    Google Scholar 

  105. Leach JP, Blacklaw J, Stewart M, et al. Mutual pharmacokinetic interactions between remacemide hydrochloride and carbamazepine [abstract]. Epilepsia 1995; 36 Suppl. 3: S163

    Google Scholar 

  106. Levy RH, Lin HS, Blehart H, et al. Pharmacokinetics of stiripentol in normal man: evidence of nonlinearity. J Clin Pharmacol 1983; 23: 523–33

    PubMed  CAS  Google Scholar 

  107. Loiseau P, Duche B. Potential antiepileptic drugs: stiripentol. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 1045–56

    Google Scholar 

  108. Levy RH, Loiseau P, Guyot M, et al. Michaelis-Menten kinetics of stiripentol in normal humans. Epilepsia 1984; 25: 486–91

    PubMed  CAS  Google Scholar 

  109. Levy RH, Loiseau P, Guyot M, et al. Effects of stiripentol on valproate plasma level and metabolism [abstract]. Epilepsia 1987; 28: 605

    Google Scholar 

  110. Levy RH, Loiseau P, Guyot M, et al. Stiripentol kinetics in epilepsy: nonlinearity and interactions. Clin Pharmacol Ther 1984; 36: 661–9

    PubMed  CAS  Google Scholar 

  111. Farwell JR, Anderson GD, Kerr B, et al. Stiripentol in atypical absence seizures in children: an open trial. Epilepsia 1993; 34: 305–11

    PubMed  CAS  Google Scholar 

  112. Moreland TA, Astoin J, Lepage F, et al. The metabolic fate of stiripentol in man. Drug Metab Dispos 1986; 14: 654–62

    PubMed  CAS  Google Scholar 

  113. Mather GG, Bishop FE, Trager WF, et al. Mechanisms of stiripentol interactions with carbamazepine and phenytoin [abstract]. Epilepsia 1995; 36 Suppl. 3: S162

    Google Scholar 

  114. Kerr BM, Martinez-Lage JM, Viteri C, et al. Carbamazepine dose requirements during stiripentol therapy: influence of cytochrome P450 inhibition by stiripentol. Epilepsia 1991; 32: 267–74

    PubMed  CAS  Google Scholar 

  115. Levy RH, Martinez-Lage M, Kerr BM, et al. Effect of stiripentol on the formation and elimination of carbamazepine epoxide [abstract no. 71]. 17th International Epilepsy Congress; 1987 Sep 6–11: Jerusalem.

  116. Loiseau P, Tor J. Stiripentol in absence seizures [abstract]. Epilepsia 1987; 28: 579

    Google Scholar 

  117. Loiseau P, Strube E, Tor J, et al. Evaluation neuropsychologique et thérapeutique du stiripentol dans l’epilepsie: resultats préliminaires. Rev Neurol 1988; 144: 165–72

    PubMed  CAS  Google Scholar 

  118. Levy RH, Loiseau P, Guyot M, et al. Effects of stiripentol on valproate plasma level and metabolism [abstract]. Epilepsia 1987; 28: 605

    Google Scholar 

  119. Levy RH, Loiseau P, Guyot M, et al. Effect of stiripentol dose on valproate metabolism [abstract]. Epilepsia 1988; 29: 709

    Google Scholar 

  120. Levy RH, Rettenmeier AW, Anderson GD, et al. Effects of polytherapy with phenytoin, carbamazepine and stiripentol on formation of 4-ene-valproate, a hepatotoxic metabolite of valproic acid. Clin Pharmacol Ther 1990; 48: 225–35

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perucca, E., Bialer, M. The Clinical Pharmacokinetics of the Newer Antiepileptic Drugs. Clin-Pharmacokinet 31, 29–46 (1996). https://doi.org/10.2165/00003088-199631010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631010-00003

Keywords

Navigation